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From  the A uthor’s  P re fa ce  
to  the T hird E d ition

This is not an easy-reading text on algebra for beginners. 
Neither is it a manual. It is a book for free reading. It is 
designed for a reader with some knowledge of algebra, even 
though half mastered and perhaps half forgotten. The pres
ent text hopes to help the reader recall such haphazard 
knowledge and polish it up, the aim being to fix certain 
facts in his mind. It is meant to develop in the reader a 
taste for algebra and problem-solving, and also excite him 
to dip into algebra textbooks and fill in the blanks in his 
knowledge.

To make the subject more attractive I have made use of 
a variety of tools: problems with intriguing plots to excite 
the reader’s curiosity, amusing excursions into the history 
of mathematics, unexpected uses that algebra is put to in 
everyday affairs, and more.
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Chapter one

THE FIFTH  OPERATION 
OF MATHEMATICS

T he F ifth  O peration

Algebra is often called the “arithmetic of seven operations”, 
thus stressing the fact that the four commonly known mathe
matical operations are supplemented by three new ones: 
raising to a power and its two inverse operations.

We start our algebraic talks with the fifth operation— 
raising a number to a power.

Do the practical affairs of everyday life have any need 
for this operation? It turns out they do. We often encounter 
such situations. First recall the many cases of computing 
areas and volumes that ordinarily call for squaring and 
cubing figures. Then the force of universal gravitation, elec
trostatic and magnetic interactions, light and sound that 
diminish in force in proportion to the second power of the 
distance. The periods of revolution of the planets about the 
sun (and of satellites about planets) are connected with the 
distances from the centre of revolution by a power relation
ship: the squares of the periods of revolution are in the 
same ratio as the cubes of the distances.

One should not think that real life involves only second 
and third powers with higher powers found only in the 
problems of algebra books. Engineers dealing with strength- 
of-materials calculations constantly find themselves up 
against fourth powers and even (when computing the diame
ter of a steam pipeline) sixth powers. A water engineer 
studying the force with which running water entrains rocks 
also has to deal with a sixth-power relationship. If the rate 
of the current in one river is four times that in another, the 11
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fast river is capable of rolling rocks that are 4°, or 4096, 
times heavier than those carried by the slower river.* 

Even higher powers are encountered when we study the 
relationship between the brightness of an incandescent body 
(say the filament in an electric light bulb) and its tempera
ture. The total brightness (luminance) in the case of white 
heat increases with the twelfth power of the temperature; in 
the case of red heat, it increases with the thirtieth power of 
the temperature (we refer here to absolute temperature, 
that is, we reckon from minus 273 °C). This means that a body 
heated say from 2000° to 4000° absolute temperature, that is 
by a factor of two, becomes brighter by a factor of 212, which 
is more than 4000 times greater. We will come back to this 
remarkable relationship when we deal with the manufactur
ing of electric light bulbs in a later chapter.

A stron om ica l N um bers

Hardly anyone makes as much use of the fifth mathemati
cal operation as astronomers, who are constantly dealing 
with enormous numbers that consist of one or two significant 
digits and then a long string of zeros. If we were to write out 
in full all of these trully “astronomical11 numbers, it would 
be very inconvenient, especially in calculations. Take the 
distance to the Andromeda Nebula. Written out in full in 
the ordinary way, we have the following number of kilo
metres*

95 000 000 000 000 000 000.
Now if we were to express this distance in a smaller unit, 

say, centimetres—and this often happens in astronomical 
calculations—we would have to add five more zeros:

9 500 000 000 000 000 000 000 000.
* For more about these things see my book Recreational Mechanics 

(in Russian).
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The masses of stars call for still bigger numbers, especially 
if they are expressed in grams (and many calculations call 
for grams). The mass of the sun expressed in grams comes to

1 983 000 000 000 000 000 000 000 000 000 000.
It is easy to imagine the difficulties involved in calcula

ting with such unwieldy numbers and also the chances of 
making mistakes. Yet the above-mentioned numbers are 
by far not the largest to be found in astronomy.

The fifth mathematical operation serves as a simple way 
out of this complication. The number one followed by a 
string of zeros is always a definite power of ten:

100 =  102, 1000 =  103, 10 000 =  104 and so forth.
The two giant numbers given above can now be written 

down neatly as
95-1023 for the first number and 

1983-1030 for the second number.
This is done not only to save space but also to simplify 

calculations. If we needed to multiply these two numbers 
together, all we would have to do is find the product 
95-1983 =  188 385 and put it in front of the factor
1Q23+30 =  1Q 63.

95 • 1023 • 1983 • 1030 =  188 385.1053.
This is of course much more convenient than to write out a 

number with 23 zeros and then one with 30 zeros and, final
ly, with 53 zeros. Not only is it more convenient but also 
more reliable, since it is easy to miss one or two zeros in 
such long strings of them, and the result would be wrong.



H ow  Much d o e s  
th e  E arth’s  A tm osphere W eigh ?

Here is a convincing way to simplify practical calculations 
by means of exponential notation (using exponents to ex
press powers of numbers): let us determine how many times 
the mass of the earth is greater than the mass of the earth’s 
atmosphere.

As we know, each square centimetre of the earth’s sur
face supports a column of air equal to one kilogram. The 
atmospheric shell of the earth is, as it were, made up entirely 
of such columns of air—as many as there are square centi
metres on the earth’s surface. That is how many kilograms 
the atmosphere of our planet weighs. From a reference book 
we find the earth’s surface to be equal to 510 million, or 
51-107, square kilometres.

Now figure out how many square centimetres there are in 
a square kilometre. A linear kilometre contains 1000 metres 
with 100 centimetres in each, which means it is equal to 
106 cm, and a square kilometre contains (105)2 =  1010 square 
centimetres. And so the earth’s surface works out to

5 M 0 M 0 10 =  5 M 0 17
square centimetres. And that also is the weight of the earth’s 
atmosphere in kilograms. Converting to (metric) tons, we 
get

51-1017: 1000 =  51-1017 : 103 =  5 M 0 17' 3 =  5 M 0 14.

Now the mass of the earth is taken to be 
6-1021 tons.

To determine bow much heavier the globe is than its 
atmosphere, we perform the following division:

6 * 1021: 51 -1014 ^  106,
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which means that the mass of the atmosphere is roughly one 
millionth of that of the earth.*

C om bustion  W ithout F la m es  
or H eat

Ask a chemist why wood or coal burns only at a high 
temperature and he will tell you that strictly speaking car
bon combines with oxygen at any temperature, but that at 
low temperatures the process is extremely slow (which 
means a very small number of molecules enter into the re
action) and so is never detected. The law that governs the 
rate of chemical reactions states that a drop in the tempe
rature of 10° reduces the rate of the reaction (the number of 
participating molecules) by a factor of two.

Let us now apply this to the reaction of wood combining 
with oxygen, which means “burning”. Suppose at a flame 
temperature of 600°, one gram of wood burns up completely 
in one second. How long will it take for one gram of wood to 
burn up at 20°? We already know that at a temperature 
that is lower by 580 =  58 *10 degrees, the rate of reaction is 
less by a factor of

258
which means 1 gram of wood will burn up in 268 seconds.

How many years is that? We can get an approximate an
swer without performing 57 multiplications by 2 and without 
using logarithmic tables. Let us make use of the fact that

210- 1 0 2 4 «  103.
Hence

258 =  2*0-2 =  230.22 =  -L.260 =  — . ( 210)6 «  4 - - 1018 
4 4 v ' 4

* The symbol ~  stands for “approximate equality”.
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which is about a quarter of a quintillion seconds (quintil- 
lion as in the American and French system of numeration). 
There are 30 million (or 3-107) seconds in a year, and so

( - -  ■ 1018) :  (3 • 107) =  • 10“ «  1010.

Ten thousand million yearsl That is roughly how long it 
would take for a gram of wood to burn without flames and 
heat.

Thus, wood and coal burn at ordinary temperatures without 
even being set fire to. The discovery of tools for making 
fire have accelerated that impossibly slow process by a factor 
of thousands of millions.

T h e C h anging  W eather
PROBLEM

Let us describe the weather using only one characteristic: 
cloudy or not cloudy. Days will be described as clear or 
overcast. Do you think there will be many weeks with diffe
rent changes of weather under this condition?

There would appear to be very few: a month or two will 
pass and all combinations of clear and overcast days in the 
week will have been exhausted. Then one of the earlier 
combinations will inevitably recur.

But let us calculate exactly how many distinct combina
tions are possible under these conditions. This is a problem 
that unexpectedly leads us to the fifth mathematical ope
ration.

The problem is: in how many different ways can clear and 
overcast days alternate in one week?

SOLUTION
The first day of the week is either clear or overcast: that 

gives us two combinations. 16
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Over a two-day period we have the following possible 
alternations of clear and overcast days:

clear and clear, 
clear and overcast, 
overcast and clear, 

overcast and overcast.

Thus, in two days we have 22 distinct alternations. In a 
three-day period, each of the four combinations of the first 
two days combines with two combinations of the third day; 
there will be

22 -2 =  23
alternations in all.

In four days the number of alternations will reach
23 »2 =  2 \

In five days, there will be 26 alternations, in six days 26, in 
seven clays (one week), 27 =  128 distinct alternations.

Hence, there are 128 weeks with a distinct sequence of 
clear and overcast days. A total of 128*7 =  896 days will 
pass before one of the earlier combinations is repeated. 
A repetition can of course occur before that, but 896 days is 
the period after which a recurrence is inevitable. And con
versely, two years and more (2 years and 166 days) may pass 
during which the weather in one week will not be like that 
of any other week.

A C om b in ation  L ock
----------  —  — -II ■ " ..!■■■■ ■- =

PROBLEM
A safe was discovered in an old building, but no one knew 

the combination of letters out of the 36 on the rim of each 
of the five circles that would unlock the safe. So as not to 
break the safe, it was decided to try all combinations of the
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letters on the rim at the rate of three seconds for each new 
combination.

Was there any chance of hitting upon the right combina
tion within the next 10 days?

SOLUTION

Our task now is to calculate the total number of combina
tions of letters that have to be tested*

Each of the 36 letters of the first circle can combine with 
each of 36 letters of the second circle. This brings the total 
of two-letter combinations to

36*36 =  36a

To each of these combinations we can adjoin any combi
nation of 36 letters of the third circle and so there are a 
possible

362*36 =  363

combinations of three letters.
Continuing in the same way, we obtain 364 possible four- 

letter combinations and 365 five-letter combinations, or 
60 466 176. To run through these 60-some million combina
tions would require (at the rate of 3 seconds per combina
tion)

3*60 466 176 =  181 398 528

seconds, or 50 000 hours, or nearly 6300 eight-hour working 
days, which is more than 20 years.

Thus, the chances that the safe will be opened within 10 
working days, is 10 out of 6300 or one in 630. This is a very 
small probability.
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'fh e  S u p e rstit io u s  C y c lis t

PROBLEM

Cyclists have six-digit licence numbers on their bicycles. 
A man bought a bicycle but, being superstitious about a pos
sible crash-up, called “figure-eight” in cyclists’ terminology, 
he was worried about an “8” appearing in his licence number. 
However, after some thought, he calmed down realizing 
that 10 digits (0, 1, . 9) can take part in each number
and there is only one unlucky digit, 8. Therefore there is 
only one chance in ten of his getting an unlucky number.

Was his reasoning correct?

SOLUTION

There are 999 999 numbers in all: from 000 001 to 999 999. 
Now let us see how many lucky numbers there are. The 
first position can accommodate any one of the nine] lucky 
numbers: 0, 1, 2, 3, 4, 5, 6, 7, 9. The second position too. And 
therefore there are 9*9 =  92 lucky two-digit combinations. 
To each of these combinations we can adjoin (in the third 
position) any one of nine digits and so we come up with 
92-9 =  93 lucky three-digit combinations.

In the same way we determine the number of six-digit 
combinations that are lucky: 96. True, one has to take into 
account the number 000 000, which cannot be used for a 
licence plate. Thus, the number of lucky licence numbers 
is 96 — 1 =  531 440, which is slightly more than 53% of 
all the numbers and not 90%, as our cyclist had presumed.

We leave it to the reader to figure out that there are more 
unlucky numbers than lucky ones among seven-digit num
bers.
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T he R e su lts  of R epeated  PoubliiiQ

A striking example of an exceedingly fast build-up of some 
small quantity when repeatedly doubled is the famous 
legend about the award to be given to the discoverer of 
chess.* Here are some other examples, less famous.

PROBLEM
The infusorian paramecium divides in half on the average 

every 27 hours. If all newly born infusorians remained alive, 
how long would it take for the progeny of one paramecium to 
fill up a volume equal to that of the sun?

Starting data: the 40th generation of a paramecium, when 
none perish, occupies one cubic metre; we take the volume 
of the sun as equal to 1027 cubic metres.

SOLUTION
The problem reduces to determining how many times 1 cu

bic .metre has to be doubled in order to obtain a volume of 
1027 cubic metres. Since 210 «  1000, we have

10*7 =  (103)9 «  (210)9 =  290.
Which means that the fourtieth generation has to undergo 
another 90 divisions before it attains the volume of the sun. 
And the total number of generations, from the first on, 
comes out to 40 +  90 =  130. It is easy to calculate that 
this will occur on the 147th day.

In passing, we may note that microbiologist Metalnikov 
actually observed 8061 divisions of paramecium. I leave it 
to the reader to figure out what a staggering volume the last 
generation would occupy if not a single infusorian had pe
rished.

Another interesting problem is the converse of the one 
just proposed.

* See my book Figures for Fun, Mir Publishers, Moscow.
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Imagine the sun to divide in half, then the halves also 
in half, and so on. How many divisions will it take to reduce 
the sun to the size of an infusorian?

Although the reader already knows the answer, 130, it 
seems strikingly out of all proportion.

This same problem was proposed to me in the following 
form.

A sheet of paper is torn in half, one of the halves is again 
torn in half, an(J so on. How many divisions will it take to 
reduce the paper to the size of an atom?

Assuming the paper weighs one gram and an atom is tak
en to be on the order of 1/1024 gram, we reason as follows. 
Since it is possible to replace 1024 by the approximately 
equal expression of 280, it is clear that only 80 halving ope
rations will be required, which is nowhere near the millions 
that one often hears as an answer to the problem.

M illio n s of T im es F a ster

An electric device called a trigger (or flip-flop) circuit 
contains two electron tubes (transistors or so-called printed 
circuits can take the place of electron tubes). In a trigger 
circuit, current can flow through only one tube: either the 
left-hand one or the right-hand one. The trigger circuit has 
two contacts to which a transient electric signal (pulse) 
can be fed and two contacts through which the response from 
the circuit is delivered. When an electric signal is fed to the 
trigger, it switches: the tube that was conducting current is 
disconnected, and the current passes through the other tube. 
The response signal is delivered by the circuit when the 
right-hand tube is nonconducting and the left-hand tube is 
conducting.

Let us see how the trigger circuit will operate when seve
ral electric signals are delivered to it in succession. We will 
describe the state of the circuit by its right-hand tube: if no
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current flows through the right-hand tube, we say that the 
circuit is in “state 0’\  if current flows, then it is in “state 1".

To start, let us suppose the circuit is in state 0, which 
means the left-hand tube is conducting (Fig. 1). After the 
first pulse, current will flow through the right-hand tube

0  O
Starting state 0

O  0 1st pulse

After first pulse: state 1 

Response pulse 0 O 2nd pulse

After second pulse: state 0 and 
delivery of response pulse

Fig. 1

and the circuit switches to state 1. In this state there is no 
response signal from the circuit since that can occur only 
when the right-hand (not the left-hand) tube is off.

After the second signal, the current flows through the 
left-hand tube, and the circuit is again in state 0. But in 
this state the trigger circuit delivers a response signal (pulse).

Then, after two pulses, the circuit returns to its original 
state. Therefore, after the third pulse, the circuit is in state 
1, just as it was after the first pulse. After the fourth pulse 
the circuit is in state 0 (like it was after the second pulse) 
with a simultaneous delivery of the response signal, and so 
on. The state of the circuit is repeated after every two pulses.
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Now suppose there are several trigger circuits and that 
signals are delivered to the first circuit, responses of the 
first circuit are delivered to the second circuit, responses 
of the second are delivered to the third, and so forth (in 
Fig. 2 the trigger circuits are arranged from right to left). 
Now let us see how such a chain of trigger circuits will ope
rate.

To begin with, suppose all circuits are in state 0. For in
stance, for a chain consisting of five circuits we have the

3rd trigger 2nd trigger 1st trigger

Fig. 2

combination 00000. After the first signal, the first (right
most) circuit is in state 1, and since there is no response 
pulse, all other circuits are in state 0, and the chain may be 
described by the combination 00001. After the second signal, 
the first circuit becomes nonconducting (state 0), but will 
deliver a response signal that switches on the second trigger 
circuit. The other circuits remain in state 0, and we get the 
combination 00010. After the third signal, the first circuit 
goes on, and the other circuits remain in their states. We 
get the combination 00011. After the fourth signal, the first 
circuit goes off and delivers a response signal; the response 
turns off the second circuit and also yields a response; final
ly, this latter signal turns on the third circuit and we get 
the combination 00100. 23
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Continuing in the same manner, we finally get the fol
lowing set of combinations:

1st signal — combination 
2nd signal—combination 
3rd signal — combination 
4th signal —combination 
5th signal — combination 
6th signal— combination 
7th signal —combination 
8th signal — combination

00001
00010
00011
00100
00101
00110
00111
01000

We see that the chain of trigger circuits “counts” the in
coming signals and records them in a system of zeros and 
ones. It is easy to see that this system is not our familiar 
decimal system of numeration but the binary system.

In the binary system of numeration, every number con
sists of ones and zeros. The unit of the next higher order is 
two times that of the preceding order, and not ten times 
greater, as it is in the decimal system of notation. The unit 
in the rightmost position in binary notation is the ordinary 
unit. The unit in the next higher order (or place)—second 
from the right—denotes two, the next order denotes four, 
the next eight, and so forth.

For example, the number 19 =  16 +  2 +  1 is written in 
binary as 10011.

And so we have a chain of trigger circuits that counts the 
number of incoming signals and records them in the binary 
system of notation. An important thing to note is that the 
switching of a circuit (that is, the recording of one incoming 
pulse) takes a few hundred millionths of a secondl Modern 
circuits can count tens of millions of pulses per second, which 
is millions of times faster than what a human being can do 
without any instruments: the human eye can distinguish
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the signals in a sequence if they don’t come faster than one 
every tenth of a second*

If we make up a chain consisting of twenty trigger cir
cuits, which amounts to recording the number of signals by 
means of at most twenty digits in binary notation, then we 
can count up to 220 — 1. This number exceeds a million. 
Now if we made up a chain of 64 circuits, we could write 
down the famous chess number.

The ability to count millions of signals a second is very 
important in experimental studies and nuclear physics. For 
example, it is possible to count the number of particles of a 
certain kind that fly out of a nucleus in radioactive disinte
gration.

T en T housan d  O p eration s per S econ d

It is a remarkable thing that trigger circuits permit one to 
perform operations on numbers. Let us examine the addi
tion of two numbers.

4th trigger 3rd trigger 2nd trigger 1st trigger

Fig.:3

Suppose we have three chains of circuits connected as 
shown in Fig. 3. The topmost chain serves to record the 25
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first term (or summand), the second chain records the second 
term, and the bottom chain gives the sum. When the device 
is switched on, the circuits in the lower chain receive signals 
from those in the upper and middle chains that are in posi
tion (or state) 1.

Suppose, as is shown in Fig. 3, we have the summands 101 
and 111 (in binary notation) in the first two chains. Then 
the first (rightmost) trigger circuit of the bottom chain re
ceives two signals when the device goes on: these signals 
come from the first circuits of each of the summands. We 
already know that the first circuit remains in state 0 upon 
receiving two signals, but it sends a response to the second 
circuit. Besides, the second circuit receives a signal from 
the second summand. Thus, the second circuit receives two 
signals and thus is in state 0 and sends a response pulse 
(signal) to the third circuit. Besides that, the third circuit 
receives two more signals (from each of the summands). 
Upon receiving three signals, the third circuit goes to state 
1 and sends a response signal. This response carries the 
fourth circuit to state 1 (no other signals are sent to the 
fourth circuit). As a result, the device shown in Fig. 3 
performed, in binary notation, the addition of two numbers 
by columns:

,101
“MU
~TToo

or, in the decimal system of numeration, we have 5 +  7 =  
=  12. The response pulses in the lower chain of circuits cor
respond to the carrying operation: the device “remembers” 
one unit and carries it over to the next order (column).

Now if each chain had, say, 20 circuits instead of 4, then 
we could add numbers within a million, and with more cir
cuits the numbers could be increased still further.

Actually, of course, the add unit has a more complicated 
electrical network than that shown in Fig. 3. For instance, 
the device has special circuits that delay the signals. The
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point is that if signals from both summands arrived at the 
first trigger circuit of the bottom chain at the same time 
(that is, when the device is switched on), then they would 
merge and be received as a single signal. This is circumvent
ed by having the signals from the summands delayed so 
that they come in one after another. As a result the addition 
of two numbers takes more time than the mere recording of 
a single signal in a flip-flop counter.

By changing the circuit system we can make the device 
subtract. Multiplication is also possible (it amounts to 
successive addition and therefore takes several times as 
long as addition) and division and other operations too.

The devices we have just described are used in modern 
computers, which are capable of hundreds of thousands, even 
millions of operations per second! Why millions, you might 
ask. Is it really necessary? For instance, what difference 
would it make if a computer spent one ten-thousandth of 
a second (even a quarter of a second) more time in squaring 
a 15-digit number? Aren’t both practically instantaneous?

Don’t hurry with your conclusions. Let us take a simple 
case. A chess master makes a move only after analysing 
tens, sometimes hundreds of possibilities. Now, if studying 
a single variant takes several seconds, then a mental inves
tigation of hundreds of possible moves would require min
utes, tens of minutes. It often happens that in involved 
games the players get into time-trouble and have to make 
fast moves since almost all the time has been used up. Now 
suppose we let a computer do the investigating of each pos
sible move. A computer would certainly never have time- 
trouble when it performs thousands of computations every 
second; all imaginable possibilities would come out almost 
instantaneously.

That a computer can perform complicated computations 
you know, but do you know that a computer can play a 
fairly good game of chess? We will have more to say on that 
subject a bit later.
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T he Num ber of A ll P o s s ib le
C h ess G am es

Let us make an approximate calculation of the total num
ber of different chess games that can ever be played on a 
chess board. An exact calculation is quite beyond us, but we 
will acquaint the reader with a very rough estimate of the 
total number of possible chess games. The Belgian mathema
tician M. Kraichik makes the following calculation in his 
book entitled The Mathematics of Games and Mathematical 
Diversions.

uIn the first move, white has a choice of 20 moves (16 moves 
for the eight pawns, each of which can move one or two 
squares and two moves each of the two knights). For each 
move of white, black can respond with one of the same 
20 moves. Combining each move of white with each move 
of black, we have 20*20 =  400 different games after the 
first move of each side.

“After the first move, the number of possible new moves 
increases. For example, if white made the first move P-K4, 
then it has a choice of 29 moves the next time. The number 
of possible moves continues to increase. For instance the 
queen alone, standing on Q5 has a choice of 27 moves (on 
the assumption that all squares that it can move to are va
cant). To simplify matters, let us assume the following 
average numbers:

20 possible moves for both sides in the first five moves;
30 possible moves for both sides in all subsequent moves.
“Also, we take the average number of moves in a single 

game to be 40. Then we get the following expression for the 
number of possible games:

(20-20)5- (30-30)35”.
To get an approximate idea of this figure, let us make a 

few simplifying transformations
(20 • 20)5 * (30 • 30)35 =  2010 • 3070 -  210 * 370.10s0
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Replace 210 by the approximation 1000, or 103, and ex
press 370 as
37°=388-3a «  10(34)17^  10-8017 -  10*817-1017 -  23M 0 18 

=  2 (210)5 • 1018 «  2 • 10“ • 1018 =  2 .1033 *.
And so we obtain

(20 • 20)5. (30-30)35 «  103 * 2 .1033.1080 -  2 .10116.
This number leaves far behind the legendary number of 

grains of wheat asked as payment for the invention of chess 
(that number was a mere 264 — 1 «  18* 1018). If the whole 
population of the world played chess round the clock making 
one move every second, then it would take no less than 
10100 centuries to exhaust all the games in this marathon 
of chess!

T he S ecre t of th e  C h ess M achine

You will probably be very surprised to learn that auto
matic chess-playing machines have been around for quite 
some time. How can we reconcile this fact with the practi
cally limitless number of combinations of the chess pieces?

Very simply. The machines never did really exist. They 
were merely a figment of the imagination. A very popular 
machine was that of the Hungarian mechanician Wolfgang 
von Kempelen (1734-1804) who demonstrated his machine 
at the Austrian and Russian courts and then publicly in 
Paris and London. Napoleon I played a game of chess with 
it and was confident that he was playing against a machine. 
In the middle of last century, the famous automatic chess
playing machine came to the United States and finally per
ished in a fire in Philadelphia.

Other chess-playing machines did not become as famous, 
but the belief persisted that such machines really could 
play chess.
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In actual fact, not a single chess-playing machine operat
ed automatically. There was always a clever chess master 
very much alive inside and he did the playing. The famous 
machine of Kempelen was in the form of an enormous box 
filled with complex machinery. On top of the box was a chess
board with chess pieces that were moved by the hand of a 
large doll. Before the game, anyone of the spectators could 
look inside and convince himself that no one was hidden 
there. But the trick was that there was still space enough 
to hide a small-size man (the part was played at one time 
by such famous chess masters as Johann Allgaier and Wil
liam Lewis). It may be the hidden player moved from section 
to section of the huge machine as the public was invited to 
investigate the mechanisms. Actually, the machinery did 
not in the least participate in the games and only served to 
hide the human player.

From all this we can conclude that the number of chess 
games is for all practical purposes infinite and machines 
capable of automatically making the most correct moves 
exist only in the minds of wishful thinkers. There is there
fore no need to fear a crisis in the game of chess.

However, recent developments in the computer field cast 
some doubt on the correctness of our conclusion. There 
already exist computers that have been programmed to play 
chess. These are extremely complicated computing ma
chines capable of performing many thousands of operations 
per second. We have already discussed such computing 
machines. Now let us see how a computer actually plays 
chess.

Of course, no computer can do more than carry out opera
tions on numbers. But the computations are carried out by 
the machine in accordance with a specific scheme of opera
tions, a definite program that has been worked out before
hand.

A chess program is set up by mathematicians on the basis 
of a definite tactical plan of the game; by tactics we mean a
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System of rules which for each position permits choosing a 
unique move, which is the best move from the standpoint of 
the given tactical plan. Here is an example. To each chess 
piece is assigned a definite number of points (the value of 
the piece):

King +  200 points Pawn +  1 point
Quee'n +  9 points Lagging pawn — 0.5 point
Rook +  5 points Isolated pawn — 0.5 point
Bishop
Knight

+  3 points 
+  3 points

Doubled pawn — 0.5 point

Besides that, there are definite values attached to posi
tional advantages (mobility of men, positions closer to the 
centre than to the edges of the board, and so forth) that are 
expressed in tenths of a point. Now subtract the total num
ber of points for black from the total for white. The diffe
rence obtained gives a certain picture of the material and 
positional advantage of white over black. If the difference is 
positive, then white has a better position than black, but 
if it is negative, then the position is worse.

The computer determines how the difference may change 
over the next three moves and chooses an optimal variant 
out of all possible three-move combinations and then prints 
out “move made”.* For one move, the computer requires 
very little time (depending on the type of program and the 
speed of the computer) so that time-trouble is something 
that never affects a chess-playing computer.

* There are other chess tactics too. For example, the program may 
not provide for all possible retaliatory moves of the opponent but 
only strong moves, such as check, take, offensive, defensive and the 
like. Also, relative to some very strong moves of the opponent, the 
program may provide for more than three moves ahead. A different 
scale of values for the chess pieces is also possible. The style of play 
the machine exhibits changes with the tactics chosen.
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True, a machine that can “think through” only three 
moves ahead is a rather weak “player”. (Good chess masters 
think through 10 and more moves ahead in their combina
tions.) But on the other hand, rapid progress is being made 
in the computer held and we can expect much better com
puter players in the near future.

There are a great many more interesting things in compu
ter-played chess, but they are all far beyond the scope of a 
book like this. In the next chapter we will consider some 
elementary computer programs.

T he B ig g e s t  N um ber U sin g  Only 
T h ree T w o s

The reader is probably familiar with the biggest number 
that can be written by means of three digits. You take three 
nines and arrange them thus:

which is the third “superpower” of 9.
This number is so enormous that no comparisons can help 

to gauge its immensity. The total number of electrons in the 
visible universe is a pigmy beside this towering giant. In 
my book Recreational Arithmetic [in Russian) there is a 
discussion of this monster. The reason why I have come 
back to the problem is that I want to suggest a different one 
in the same style.

Write down the largest number using three twos and not 
using any operational signs.

SOLUTION

Under the fresh impression of the three-storey arrange
ment of nines, you will probably hurry to put the twos in
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the same way:

But this time the effect is quite different. The number is 
very small, even less than 222. Indeed, all we have is 24, 
which is 16.

The truly largest number is not 222 and neither is it 
222 (or 484) but

222 =  4194 304.
This example is very instructive. It shows that in mathe

matics it is not always wise to proceed by analogy.

T h ree T h rees

PROBLEM
You will probably be more cautious when you approach 

the following problem^ write down the largest number 
using only three threes and no signs of operations.

SOLUTION
The three-decker arrangement does not produce the de

sired result either since

3s3 is only 327, which is less than 333, 
which is the largest number and the answer to our problem.

T h ree F ou rs
PROBLEM

Write down the largest number using only three fours 
and dispensing with any operational signs.
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SOLUTION
If you try the pattern of the two preceding problems,

444,
you will be wrong because this time the tower of three fours,

does yield the largest possible number. True enough, 44 =  
=  256, and 4256 is greater than 444.

T h ree Id en tica l D ig its

Let us take a closer look at this perplexing situation 
where some figures generate giants in the stacked arrange
ment, while others produce pigmies. Let us consider the 
general case.

Use three like figures to write down the largest number 
without resorting to any operational symbols.

We denote the chosen number by the letter a. Associated 
with the arrangement

222, 333 , 444
we have the following notation:

a10 a+a or a lla.
Now the three-tier arrangement looks like this:

Let us now figure out for what value of a the last arrange
ment depicts a larger number than the first arrangement. 
Since both expressions are powers with equal integral bases, 
it follows that the greater quantity corresponds to the 
greater exponent. Now when is

aa >  11a? 34
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Divide both sides of the inequality by a to get
aa_1 >  11.

It is easy to see that aa-x is greater than 11 only if a 
exceeds 3 because

44- * > l l ,

whereas the powers
32 and 21

are less than 11.
Now it is clear why we were caught unawares when work

ing the earlier problems: one arrangement is best for twos 
and threes, and an entirely different one for fours and larger 
numbers.

T he B ig g e s t  N um ber U sin g  F ou r O nes
PROBLEM

Use four ones to write down the largest number (no mathe
matical symbols are allowed).

SOLUTION
The first thing that comes to mind—1111—is many times 

smaller than the power
11“

Hardly anyone will have the patience to multiply out this 
expression, but we can estimate its value much faster by 
using tables of logarithms.

The number exceeds 285 thousand million and conse
quently is some 25 million times greater than the number 
1111.
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F ou r T w o s to  M ake th e  B ig g e s i  Niiinbei*
PROBLEM

Continuing this series of problems, let us now try four 
twos. What arrangement of four twos depicts the largest 
number?

SOLUTION
Altogether there are eight possible combinations:

2222, 2222, 2222, 2222.
2222, 2222, 2222, 2222.

Which one represents the largest number?
Let us try the top row first, that is, numbers in two 

stories.
The first one, 2222, is clearly less than any of the others. 

To compare the next two: 2222 and 2222, transform the 
second thus:

2222 =  222-11 =  (222)11 =  48411.
The last number exceeds 2222 because both the base and 

the exponent of 48411 are greater than in the case of 2222.
Now compare 2222 with the fourth number of the first 

row, 2222. We replace 2222 by a greater number 3222 and then 
show that even this greater number falls short of 2222.

True enough,
3222 =  (25)22=  2110

which is a smaller number than 2222 (the exponent is small
er).

And so we have the largest number in the top row: 2222.
That leaves us with five numbers to compare: 2222 and 

the following four numbers:

2222 , 2222 , 2222 , 2222.
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The last number, equal to 216, is too small to continue 
the contest. Now the first number is equal to 224 and is 
less than 324 or 220. It is less than each of the two numbers 
that come after it. Thus we have three numbers for com
parison and each is a power of 2. It is quite evident that the 
number with the largest exponent is the largest number. 
Now of the three exponents,

222, 484 and 220 + 2 ( =  210’2-22« 106-4)
the last one is clearly the largest.

And so the largest number that can be depicted by means 
of four twos is

We can get a rough picture of the size of this number 
without resorting to logarithmic tables if we take the fol
lowing approximate equality

210«  1000.
Then

222 =  22°.22«  4-106,

2222 «  24 000 000 >  101 200 000
Which means the final number has more than a million 
digits.



Chapter two

THE LANGUAGE OF ALGEBRA

T h e Art of S e ttin g  up E q u ation s

The language of algebra is equations. Here is what the 
great Newton wrote in his algebra textbook entitled Arithme- 
tica Universalis (Universal Arithmetic): “In order to settle a 
question referring to numbers or to the abstract relationships 
between quantities, one needs only to translate the problem 
from one’s own language to the language of algebra.” The 
following is a problem that Newton translated from human 
terms into the terms of algebra:

In  o r d in a r y  la n g u a g e : In  th e  la n g u a g e  o f  a lg e b r a :

A merchant has a certain sum 
of money. X

During the first year he spent 
100 pounds. x — 100

To the remaining sum he then 
added one third of it. (* 1 0 0 )+ " - 100- 4" - 400

During the next year he again 
spent 100 pounds.

* * -4 0 0  100_ 4 * - 7 0 0

And increased the remaining 
sum by one third of it.

Ax —  700 Ax—700 161—2800
3 1 9 9

During the third year he again 
spent 100 pounds.

16x —2800 16x —3700 
9 100= 9

After he added to the remain
der one third of it

16x-3700 16x-3700_64x-14800
9 ' 27 — 27
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In  o r d in a r y  la n g u a g e : In  th e  la n g u a g e  o f a lg e b r a :

his capital was twice the orig
inal amount.

64x —14 800
27 X

To determine the original capital at the disposal of the 
merchant, one only has to solve the last equation.

Solving an equation is often a rather simple matter, the 
real difficulty lies in setting up the equation on the basis 
of available facts. You have just seen that the art of setting 
up an equation does indeed reduce to translating from ordi
nary language to the language of algebra. But the language 
of algebra is one of few words, and so translating phrases of 
everyday speech into algebraic terms is often a hard job, as 
the reader will see from some problems given below where 
the task is to set up equations of the first degree.

T h e L ife  of D iop h an tu s
PROBLEM

Very few facts about the life of the marvellous mathema
tician of ancient times Diophantus have come down to us. 
All that we know about him is taken from an inscription 
made on his tombstone in the form of a mathematical prob
lem. It reads:

In  o r d in a r y  la n g u a g e : In  t h e  la n g u a g e  o f a lg e b r a :

Traveller] Here rest the ashes 
of Diophantus. ’tis a miracle 
that numbers can measure 
the length of his life.
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In  o r d in a r y  lan gu age.: I n  th e  la n g u a g e  o f  a lg e b r a :

A sixth portion of it was a 
beautiful childhood.

X
"6

After a twelfth part of his life 
was over, down covered his 
chin.

X
12

A seventh part he spent in 
childless wedlock.

X
T

Five years then passed and he 
rejoiced in the birth of his 
first son,"*

5

whom Fate measured out a joy
ous and radiant life on this 
Earth only half of that of 
his father’s.

X
2"

And in deep grief the old man 
ended his days on Earth, four 
years after losing his son.

X \ x I X X . .
;r~ T + T 2 + T + 5 + T +4

So how many years did Diophantus live 
before death overtook him?

SOLUTION

Solving the equation, we find that x =  84 and we also 
learn that he married at the age of 21, became a father at 
the age of 38, lost his son when he was 80 and died when he 
was 84.
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T h e H orse  and th e  M ule
PROBLEM

Here is another old problem that can readily be translated 
from words into algebraic symbols.

“A horse and a mule, both heavily loaded, were going 
side by side. The horse complained of its heavy load. ‘What 
are you complaining about?’ replied the mule. ‘If I take one 
sack off your back, my load will become twice as heavy as 
yours. But if you remove one sack from my back, your load 
will be the same as mine.’

‘‘Now tell us, wise mathematicians, how many sacks was 
the horse carrying and how many sacks the mule?”

SOLUTION

If I take one sack, x —1

my load y + i
will be twice as heavy as yours. y-j-l =  2 (x — 1)

But if you take one sack from my back, v -1
your load z + l

will be the same as mine. y l == x -{-1

We have reduced the problem to a system of equations in 
two unknowns:

y +  1 =  2 (x — 1)1 or (2x — y =• 3 
y — i =  x +  i J [ y — z =  2.

Solving it, we find that x =  5 and y ~  7. The horse was 
carrying 5 sacks and the mule 7 sacks.
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F ou r B roth ers
PROBLEM

Four brothers have 45 rubles. If the money of the first is 
increased by 2 rubles and the money of the second is decre
ased by 2 rubles, and the money of the third is doubled, and 
the money of the fourth is halved, then all of them will 
have the same amount of money. How much does each have?

SOLUTION

Four brothers have 45 rubles. x-\-y-\-z-\-t=: 45

If the first brother gets two more rubles, x-\-2

the second has two rubles taken away, y - 2

the third has his sum doubled, 2 z

the fourth has his sum halved, t
2

then all four brothers will have the same 
sum of money. x- \ - 2 =y  — 2 = 2 z = y

First we split the last equation into three separate equa
tions:

x-\~2~y  — 2,
x +  2 =  2z,
X +  2 =  y ,

$/ =  x +  4,
ar-j-2 

z ~ '~ 2” ’ 
t =  2x -f 4.
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Then, substituting these values into the first equation, we 
obtain

x +  x +  4 +  —y — +  2x +  4 =  45.

And from this we get x =• 8. Then we find y =  12, z =  5, 
and J == 20, which means the four brothers have 8, 12, 5 
and 20 rubles.

T w o B ird s by the R iv ersid e

PROBLEM

Here is a problem of an Arabic mathematician of the 
11th century.

There are two palm trees, one opposite the other on each 
side of a river. One is 30 cubits high, the other 20 cubits. 
The distance between the foot of each tree comes to 50 cu
bits. A bird is perched on the top of each tree. All of a sud
den, the birds see a fish come to the surface of the river be
tween the palm trees. They dive at the same time and reach 
the fish at the same time.

Find the distance between the foot of the taller tree and 
the fish.

SOLUTION

Using the drawing shown in Fig. 5 and applying the theo
rem of Pythagoras, we get

AB2 =  302 +  z2, AC2 =  202 +  (50 -  x)2.

But AB =  AC since both birds covered their distances in 
the same time. And so

302 +  s2 =  202 +  (50 -  x)\
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Fig. 4

Opening the brackets and simplifying, we obtain a 
first-degree equation lOCte =  2000, whence x — 20. The

B
\

\
\

\
\

\
\

\
\

\

x 50-x

y
c

Fig. 5

fish appeared at a distance of 20 cubits from the palm tree 
which is 30 cubits high.
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Out for a  S tro ll

PROBLEM

“Drop in tomorrow,” said the old doctor to his friend.
“Thank you. I ’ll start out at three. Perhaps you will want 

to take a walk. If you do, leave at the same time and we’ll 
meet half way.”

“You forget that I ’m rather old and I can only do 3 km 
an hour; you are much younger and most likely do 4 km an 
hour even at a slow pace. You’ll have to give me a head 
start.”

“True enough. Since I do one km more per hour than you 
do, I ’ll give you a head start of one kilometre, which means I 
start out a quarter of an hour earlier. Will that be enough?”

“That’s very kind of you,” the aged doctor replied.
And that was the way it was: the young man started out 

at two forty-five and walked at 4 km per hour. The doctor 
left his house at three sharp and did 3 km per hour. When 
they met, the old doctor turned around and accompanied 
his young patient to the house.

It was only when the young man got home that he real
ized that because of the quarter-hour he’d given the doctor, 
he himself had to cover four times the distance (not twice) 
that the doctor covered.

What is the distance between the two houses?

SOLUTION

Denote the distance between the two houses by x (km).
In all, the young patient walked 2x km and the doctor 

four times less, or x/2 km. When they met, the doctor had 
covered half of his distance, or z/4, and the young man the 
remaining distance, or 3z/4. The doctor walked his distance 
in x/i2 hour, the young man in 3z/16 hour, and we know 
that he spent 1/4 hour more than the doctor.
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This gives us the equation
3x x _1
I F - T J ^ T

whence x =  2.4 km, which is the distance between the 
young man’s house and the doctor’s house.

M aking H ay

A. V. Tsinger, a prominent physicist, recalls Lev Tolstoy 
posing the following problem, one that the great writer 
liked very much.

“A team of haymakers were assigned the task of scything 
two meadows, one twice the size of the other. Half a day

Fig. 6

the team worked on the larger meadow. Then it split into 
two equal groups: the first remained in the larger meadow 
and finished it by evening; the second group scythed the
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smaller meadow, but by evening there still remained a por
tion to do; this portion was scythed the next day by one 
haymaker in a single day’s work.

“How many men were there in the team?”
SOLUTION

Here, besides the chief unknown—the number of men, 
which we denote by x—it is convenient to introduce another, 
auxiliary, unknown, namely the area scythed by a single 
worker in one day; we denote it by y . Although the problem 
does not require us to find y , it will help us in finding the 
basic unknown.

We now express the area of the larger meadow in terms of 
x and y . This area was worked for half a day by x scythemen;
they mowed x ~  -y =  .

During the second half of the day, it was worked by half 
of the team, or x/2 scythemen; they did

Since the whole meadow was mowed by evening, the 
total area was

xy xy _  3xy
2 4 4 ■

Now let us use x and y to express the area of the smaller 
meadow. A total of x/2 scythemen worked on it for half a day
and mowed an area equal to ^  . Adding the uncut
portion, which is equal to y (the area cut by a single scythe- 
man in one working day), we get the area of the smaller 
meadow:

xy _  x y + k y  
4 4

It now remains to put into algebraic language the phrase 
“the first meadow is twice the size of the second meadow”
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and we have the equation
3xy . xy+Ay  =  2 Qr 3xy _  2 

4 ’ 4 £*/+4*/

Cancelling y out of the left-hand member of the equation 
(since y is not needed), we get an equation that looks like 
this:

-^ - r  =  2 or 3* =  2* +  8x-j-4
whence z =  8.

The team of scythemen consisted of 8 men.
After the first edition of Algebra Can Be Fun came out, 

Professor A. V. Tsinger sent me a detailed and extremely 
interesting account of the background of this problem. The 
principal effect of the problem, in his opinion, is that “it 
is not in the least an algebraic problem, but an arithmetic 
one and what is more it is very simple, the only difficulty 
being its unusual form ”

Professor Tsinger goes on to describe how the problem 
originated. “In the period when my father and my uncle 
I. I. Raevsky (a close friend of L. Tolstoy) studied at the 
mathematics department of Moscow University, there was a 
subject something like pedagogy. It consisted in students 
visiting an ordinary city school selected by the University 
to acquire some teaching experience under the guidance of 
the best teachers. Now there was a student by the name of 
Petrov, a friend of Tsinger and Raevsky, and he was an 
extremely gifted and imaginative fellow. This Petrov (who 
died at a very early age of tuberculosis, I believe) main
tained that the children were being spoiled at arithmetic 
lessons by standard problems and routine methods of solv
ing them. To confirm his belief, Petrov invented problems 
that were quite out of the ordinary and put the best teachers 
in a quandary, but were easily solved by capable students 
who had not yet been spoiled by school. One of these was the 
problem of the team of scythemen (Petrov thought up a
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number of such problems). Experienced teachers were able, 
quite naturally, to solve them with the aid of equations, but 
a simple arithmetic solution eluded them. Yet, the problem 
is so simple that there is no need to resort to algebraic 
methods.

“If the whole team worked on the larger meadow for half 
a day and half the team for half a day, then it is clear that

V3

V3
v 6

V3 7/ j

Fig. 7

half the team can cut 1/3 of the meadow in half a day. This 
means that in the smaller meadow there is an uncut portion 
equal to 1/2 — 1/3 =  1/6. If one scytheman can work 1/6 
of a meadow in one day, and a total of 6/6 +  2/6 =  8/6 
was cut, then there must be 8 workers.

“Tolstoy, who all his life enjoyed tricky problems that 
were not too involved, learned about this problem from my 
father when still a young man. When I met Tolstoy—al
ready an old man—and discussed the problem with him, he 
was most delighted by the fact that the problem becomes 
still clearer, literally transparent, if a very simple drawing 
is employed in the solution (Fig. 7).”
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We will now look into several problems that are mor£ 
easily solved arithmetically than algebraically if one has 
quick wits.

C ow s in  the M eadow
Pr o b l e m

“When studying the sciences, problems are more useful 
than rules,” wrote I. Newton in his Universal Arithmetic 
and accompanied his theoretical propositions with a number

Fig. 8

of examples. Among these exercises was a problem of pastur
ing cows, one of a special kind of peculiar problems some
what like the following.
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“The grass in a meadow grew equally thick and fast. It 
was known that 70 cows could eat it up in 24 days, while 
30 cows could do it in 60 days. How many cows would crop 
the grass of the whole meadow in 96 days?”

This problem served as the plot of a humorous story rather 
reminiscent of Chekhov’s Tutor. Two grown-ups, relatives 
of the schoolboy whose task it was to solve the problem, 
are having a tough time and making little headway.

“This is very strange,” says one, “if 70 cows crop the grass 
in 24 days, then how many will do that in 96 days? Natu-
rally, 1/4 of 70 is 17-̂ - cows... . That’s the first piece of non-
sense. Here’s another piece: 30 cows crop the grass in 60 
days; how many cows will do that in 96 days? Still worse, 

3we have 18- -̂ cows. What is more, if 70 cows do the job in
24 days, then 30 cows need 56 days, and not 60, as stated in 
the problem.”

“Have you taken into account that the grass is growing 
all the time?” asks the other one.

That remark is very much to the point: if the grass is 
constantly growing and this is disregarded, then it is not 
only impossible to solve the problem, but even the starting 
hypothesis will appear to be contradictory.

So how is the problem worked?
SOLUTION

Again we introduce an auxiliary unknown that denotes 
the daily increase (growth) of grass in fractions of its supply 
in the meadow. In one day it grows by an amount y . In 24 
days it grows 24y. If the total amount is, say, 1, then in 24 
days the cows will eat up

1 +  24 y.
And in one day, the herd totalling 70 cows will eat

l +  24y 
24
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and one cow will eat
1 +  24*/ 
24*70 '

Likewise, from the fact that 30 cows would have cropped the 
grass of the meadow in 60 days, we conclude that one cow 
consumes per day an amount equal to

1 +  60*/
30*60 '

But the amount of grass consumed by a cow in a day is the 
same for both herds, and so

1 +  24*/ 1 +  60y
24*70 30*60 ’

whence we get
_  1 

y ~ m -

Having found y (the increase), it is easy to determine 
what portion of the original amount of grass was consumed 
by one cow in one day:

1
1 +  24;/ 1 +  24'480 1
24-70 — 24-70 — 1600 *

Finally, we set up an equation for the final solution to 
the problem: if the desired number of cows is then

1 +  96‘W _  l 
96x 1600

and we have x =  20.
Thus, 20 cows would have eaten up all the grass in 96 

days.
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N ew to n ’s  P rob lem

Now let us consider Newton’s problem of oxen, after 
which the preceding one was patterned.

Incidentally, the problem was not devised by Newton 
himself but is the product of folklore in mathematics. 

“Three meadows covered with grass of the same thickness
and rate of growth have the following areas: 3-g- hectares,
10 hectares and 24 hectares. The first served to feed 12 oxen 
during 4 weeks and the second, 21 oxen during 9 weeks. 
How many oxen can feed on the third meadow in the course 
of 18 weeks?”

SOLUTION
We introduce an auxiliary unknown y to denote what por

tion of the original supply of grass increases in growth over 1 
hectare in one week. In the first meadow, one week sees an
increase of 3-g-y, and in four weeks the grass increases by

3 ^ y  *4 -  i/ of the original supply over one hectare. This
is the same as saying that the original area increased to

hectares. In other words, the oxen consumed as much grass 
as covers a meadow with an area of 3-|- +  y  y hectares. In 
one week, 12 oxen consumed a fourth part of this amount, 
and one ox in one week consumed a ^gth part, which is the 
available supply over an area of

( 3 |  +  i 2 l ) : / l8 .= “ + ^

53

hectares.



In exactly the same way, we find the area that feeds one 
ox during one week from the data for the second meadow:

one-week growth over 1 hectare =  y, 
nine-week growth over 1 hectare =  9y, 

nine-week growth over 10 hectares =  90y.

The area of pasture land containing a supply of grass 
for feeding 21 oxen during 9 weeks is

10 +  90 y.

The area sufficient to feed one ox during one week is
10 +  90# _  10 +  90#

9*21 ~~ 189

hectares. Both feeding quotas must be the same:
10 +  40# _  10 +  90#

144 “  189

Solving this equation, we get y =  1/12.
Now let us determine the area of the meadow whose avail

able supply of grass is enough to feed one ox during one 
week:

10 +  40# 
144 144

_5_
54

hectares. Finally, we take up the problem proper. Denoting 
the desired number of oxen by x, we have

24 +  24 18—  _  5

18* 54

and from this we get x =  36. The third meadow can feed 
36 oxen during 18 weeks.
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In terch a n g in g  th e  H ands of a  C lock
PROBLEM

The biographer and friend of the eminent physicist Al
bert Einstein, A. Moszkowski, wished to distract his friend 
during an illness and suggested the following problem 
(Fig. 9).

The problem he posed was this: “Take the position of the 
hands of a clock at 12 noon. If the hour hand and the minute

Fig. 9

hand were interchanged in this position the time would still be 
correct. But at other times (say, at 6 o’clock) the interchange 
would be absurd, giving a position that never occurs in 
ordinary clocks: the minute hand cannot be on 6 when the 
hour hand points to 12. The question that arises is when 
and how often do the hands of a clock occupy positions in 
which interchanging the hands yields a new position that 
is correct for an ordinary clock?

“‘Yes,’ replied Einstein, ‘this is just the type of problem 
for a person kept to his bed by illness; it is interesting 
enough and not so very easy. I ’m afraid though that thfc
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amusement will not last long, because I already have my 
fingers on a solution.’

“Getting up in bed, he took a piece of paper and sketched 
the hypothesis of the problem. And he solved it in no more 
time that it took me to state it.”

How is this problem tackled?

SOLUTION
We measure the distances of the hands round the dial 

from the point 12 in sixtieths of a circle.
Suppose one of the required positions of the hands was 

observed when the hour hand moved x divisions from 12, 
and the minute hand moved y divisions. Since the hour hand 
passes over 60 divisions in 12 hours, or 5 divisions every 
hour, it covered the x divisions in x!f> hours. In other words, 
x/5 hours passed after the clock indicated 12 o’clock. The 
minute hand covered y divisions in y minutes, that is, in 
yt60 hours. In other words, the minute hand passed the 
figure 12 a total ofy/60 hours ago, or

x y 
~5 "60*

hours after both hands stood at twelve. This number is 
whole (from 0 to 11) since it shows how many whole hours 
have passed since twelve.

When the hands are interchanged, we similarly find that
jy___
5 60

whole hours have passed from 12 o’clock to the time indicat
ed by the hands. This is a whole number (from 0 to 11). 

And so we have the following system of equations:
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where m and n are integers (whole numbers) that can vary 
between 0 and 11. From this system we find

 ̂60 (12.iu -J- n)
X =  143 ’

60 (12ii —(- Tfi)
V =  143 *

By assigning m and n the values from 0 to 11, we can 
determine all the required positions of the hands. Since 
each of the 12 values of m can be correlated with each of the 
12 values of n, it would appear that the total number of 
solutions is equal to 12*12 =  144. Actually, however, it is 
143 because when m =  0 and n =  0 and also when m =  11 
and 72 =  11 we obtain the same position of the hands.

For m =  11, 72 =  11 we have
x =  60, y =  60

and the clock shows 12, as in the case of m =  0, n =0. 
We will not discuss all positions, but only two.
First example:

60*13 _ r  5 
143 11 ’

and the clock reads 1 hour 5^r minutes; the hands have11
merged by this time and they can of course be interchanged 
(as in all other cases of coincidence of the hands).

Second example:
m — 8, n =  5;

x =  ~  42.38, y =  90(8143<2'5) «  28.53.

The respective times are: 8 hours 28.53 minutes and 5 
hours 42.38 minutes.
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We know the total number of solutions: 143. To find all 
the points of the dial that yield the required positions of 
the hands, one has to divide the .circular dial into 143 equal 
parts, thus obtaining the 143 desired points. At intermediate 
points no other suitable positions can be found.

T h e H ands of a  C lock  Com e T o g eth er

PROBLEM

How many positions are there on a regular clock with 
hour hand and minute hand in a coincident position?

SOLUTION

We can take advantage of the equations derived when solv
ing the preceding problem; for if the hour hand and the 
minute hand can be brought to coincidence, then they can be 
interchanged, and nothing will change. In this procedure, 
both hands cover the same number of divisions from the 
number 12, or x =  y. Thus, from the reasoning of the preced
ing problem we can derive the equation

where m is an integer between 0 and 11. From this equation 
we find

60 m

Of the twelve possible values for m (from 0 to 11) we get 11 
(not 12) distinct positions of the hands because when m =  11 
we find x =  60, that is, both hands cover 60 divisions and 
arrive at 12; the same occurs when m =  0.
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G u essin g  N um bers

The reader is probably familiar with the game of guessing 
numbers. The conjurer usually suggests performing opera
tions like the following: think up a number,* add 2, mul
tiply by 3, subtract 5, subtract the original number and so 
on—a total of five, even ten operations. He then asks what 
number you have and, with that answer, he gives you the 
original number almost at once.

The secret of this “trick” is of course very simple, and 
again equations give the answer.

Suppose the conjurer suggests a series of operations as 
indicated in the left-hand column of the following table:

Think up a number X

add 2 x +  2

multiply the result by 3 3x-\- 6

subtract 5 3 i-f-1

subtract the original number 2x +  l

multiply by 2 4 i +  2

subtract 1 4x-j- 1

He then asks you for the final result and gives the answer 
at once. How does he do this?

It is quite clear from a glance at the right-hand column of 
the table, where the instructions of the conjurer have been 
translated into the language of algebra. From this column it 
is evident that if you think up a number x, then after all 
the operations you get Ax +  1. With this knowledge it is 
easy to “guess” the original number.
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Suppose, for example, you got the number 33. What the 
magician does is solve the equation Ax +  1 =  33 finding 
x =  8. In other words, he takes the final result, subtracts 
one (33—1 =  32) and then divides that number by 4 to 
get 32 : 4 =  8. So the original number was 8. If your final 
result is 25, the magician does some mental arithmetic 
(25 — 1 =  24, 24 : 4 =  6) and comes up with the number 
you thought up, which was 6.

So you see it is very simple. The magician knows before
hand what has to be done with the result in order to obtain 
the original number.

If that’s so, then you can make your friends marvel by 
letting them suggest the type of operations to be performed 
on the thought-up number. You suggest that somebody 
think up a number and perform operations of the following 
nature in any order: add or subtract a known number (say, 
add 2, subtract 5, and so on), multiply (but not divide 
because that will greatly complicate the trick) by a known 
number (by 2 or 3 and so on), and then add or subtract the 
original number. To get you completely confused, your 
friend mounts operation upon operation. Say, he thinks 
up 5 (which of course is kept secret), and then performs the 
operations. It goes like this:

“I have thought up a number, multiplied it by 2, added 3, 
and then added the original number; then I add 1, multiply 
by 2, subtract the original number, subtract 3, and again 
subtract the original number, and then subtract 2. Finally, 
I multiply the result by 2 and add 3.”

Now convinced that he has you thoroughly muddled, he 
gives the final number: “The result is 49.”

To his great surprise, you fire the answer at him: 5.
How all that is done is now clear enough. When your friend 

states th e . operations he is performing with the original 
number, you do the same with x. When he says “I have 
thought up a number” you say (lo yourself): “I have x ” 
He says, “I ’ve multiplied it by 2” (and he actually does
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multiply the original number by 2), whereas you multiply 
your x by 2 getting 2x. He adds 3 and you follow with 2x +  3, 
and so forth. When at last he has you in a quandary with 
his involved operations, you get what is shown in the follow
ing table (the left-hand column is what your friend says 
aloud, and the right-hand column contains the operations 
that you perform mentally:

I have thought up a number X

I multiply by 2 2x

add 3 to the result 2x -h 3

add the original number 3x-j-3

add 1, 3x -j- 4

multiply by 2 6x -|- 8

subtract the original number 5a -j- 8

subtract 3 5.r -\- 5

again subtract the original number 4.r -| - 5

subtract 2 4x -j- 3

multiply the result by 2 8a- j- G

and add 3. 8x -j- 9

Then you yourself complete the operations with the result 
8x +  9. He says he has 49, which gives you the needed equa
tion: 8x +  9 =  49. To solve it takes a second and you give 
him the answer straight off: 5.
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This is quite a startling trick because you allow your 
friend to think up any series of operations that he wants to.

True, there is one case when the trick fails. If, for example, 
after a number of operations you get x +  14, and then your 
friend says, “and now I subtract the original number and 
have 14”, you follow him with (x +  14) — x — 14 and you 
do get 14 but there is no equation and you cannot guess the 
original number. Here is a way out. As soon as you get a 
result that does not contain the unknown x, you interrupt 
your friend and say, “Stop! Without any help from you I 
know what number you now have, it is 14”. This is a still 
greater surprise to your friend because he hasn’t told you 
anything! And although you cannot guess the real (original) 
number, it is quite a trick after all.

Here is an example of how this is done (your friend’s re
marks are in the left-hand column as usual):

I have thought up a number X

I add 2 to it x +  2

and multiply the result by 2 2x +  i

I now add 3 2x +  7

subtract the original number i-j-7

add 5 x + \ 2

and then subtract the original number 12

When you get 12, which is an expression without the un
known x, that is when you have to stop your friend and re
port the number 12.

All you need is a little practice and you can put on a dis
play of tricks with your friends.
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Im aginary  N on sen se

PROBLEM

Here is a problem that might appear to be absurd:
What is the number 84 if 8*8 is 54?
This strange question is by no means meaningless, and the 

problem is solvable with the aid of equations.
Try to figure it out.

SOLUTION
You have probably guessed that the numbers in this prob

lem are not in the decimal system of notation but in some 
other system, otherwise the phrase “what is the number 84” 
would indeed be senseless. Suppose the base of the system of 
numeration is x. Then the number “84” stands for 8 units of 
the second order and 4 units of the first, or

“84” =  8x +  4.
The number “54” means 5x +  4.
We now have the equation 8-8 =  5x +  4 or, in the deci

mal system, 64 =  5x +  4, whence x =  12.
The numbers are written in the duodecimal system of num

bers, “84” =  8-12 +  4 =  100. Thus, if 8-8 =  “54”, then 
“84” =  100.

The same kind of solution can be applied to another prob
lem of this type.

What does 100 stand for if 5-6 =  33?
Answer: 81 in the nonary (base-9) system of numbers.

T he E quation  D oes the T h in k in g

If you have ever doubted that an equation can sometimes 
be cleverer than you yourself, work out the following 
problem.
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The father is 32 years old and his son is 5. How many years 
will pass before the father is 10 times older than the son? 
If we denote the sought-for years by x, x years later the 
father will be 32 +  x and the son will be 5 +  x. And since 
the father must be 10 times older than his son, we have the 
equation

32 -J- x — 10 (5 -h

which, when solved, yields x =  —2.
“In minus 2 years” of course simply means two years be

fore. When we set up the equation, we did not give thought 
to the fact that the age of the father will never be 10 times 
that of his son in the future; that ratio could only be in the 
past. The equation this time was a bit wiser than we were 
and reminded us of our faulty thinking.

C urios and the U n exp ected

When working equations we sometimes come up with an
swers that are a mystery to the inexperienced mathematician. 
Here are some examples.

I. Find a two-digit number with the following properties. 
The tens digit is less by 4 than the units digit. If we sub
tract the desired number from the same digits written in 
reversed order, we get 27.’

Denoting the tens digit by x and the units digit by y, we 
can readily set up a system of equations for this problem:

I x =  y — 4,
\ (lOy +  x) — (10a: +  y) =  27.

Substituting the value of x from the first equation into 
the second, we get

10y +  y — 4 — [10 (y — 4) +  y] =  27
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and, simplifying,
36 =  27.

We do not yet know the values of the unknowns but we 
have learned that 36 =  27 ... . Yet what does that mean?

It merely means that there is no such two-digit number 
that can satisfy the indicated conditions, and that the equa
tions contradict each other.

Indeed, multiplying both sides of the first equation by 9, 
we get

9y — 9# =  36
and from the second equation (after removing brackets and 
collecting terms) we get

9y — =  27.
One and the same quantity 9y — 9x is, by the first equa

tion, equal to 36 and, by the second equation, to 27. This is 
clearly impossible since 36 #  27.

A similar misunderstanding results when solving the 
following system of equations:

( x Y  =  8,
1 xy =  4.

Dividing the first equation by the second, we get
xy =  2

and now if we compare the resulting equation with the 
second one above, we see that

(xy =  4,
1 xy =  2

or 4 =  2. There are no numbers that satisfy this system. 
Such systems of equations that have no solution are said to 
be inconsistent.
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II. A different kind of surprise awaits us if we alter the 
condition of the preceding problem somewhat. We assume 
that the tens digit is 3 (not four) less that the units digit, 
otherwise the problem remains the same. What number is 
that?

Set up an equation. If the tens digit is denoted by x, 
then the units digit becomes x +  3. Expressing the rest of 
the problem in the language of algebra, we get

10 (# +  3) +  # — [lOx +  (x +  3)] =  27.
Simplifying, we arrive at the equality

27 =  27.
This is undoubtedly true, but it tells us nothing about the 

value of x. Does this mean that there are no numbers that 
satisfy the requirements of the problem?

Quite the contrary, it means that the equation we set up 
is an identity: it is true for all values of the unknown x. 
Indeed, it is easy to see that in this problem every two-digit 
number in which the units digit exceeds the tens digit by 3 
has this property:

14 +  27 =  41, 47 +  27 =  74,
25 +  27 =  52, 58 +  27 =  85,
36 +  27 =  63, 69 +  27 =  96.

III. Find a three-digit number with the following prop
erties:

(1) the tens digit is 7,
(2) the hundreds digit is less by 4 than the units digit,
(3) if the digits of the number are reversed, the new num

ber will exceed the original one by 396.
Let us set up an equation and denote the units digit by x:
100z +  70 +  x -  4 -  [100 (x -  4) +  70 +  x] =  396.
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After a few simplifications, this equation yields 
396 =  396.

The reader already knows what this means: that every 
three-digit number in which the first digit is 4 less than the 
third (the tens digit plays no role) is increased by 396 if 
the order of the digits is reversed.

Up to now we have been considering problems that are 
more or less artificial, bookish; their purpose was to help 
acquire skill in setting up equations. Now that we are theo
retically equipped, let us tackle some problems of a practi
cal nature, from industry, everyday life, the military 
sphere, and sports.

At the B arb er’s
PROBLEM

Does algebra ever come in handy in cutting hair? Yes it 
does. I became convinced of this when a barber once ap
proached me with an unusual request:

“Could you please help us here in a problem we have?”
“We’ve spoiled so much of the solution because of it!” put 

in another barber.
“What is the problem?” I asked.
“We have two solutions of hydrogen peroxide: a 30 per 

cent solution and a 3 per cent solution. We want to mix them 
and get a 12 per cent solution, and we can’t find the proper 
proportion.”

I took a piece of paper and quickly figured out the proper 
proportion.

It turned out to be very simple. What was it?
SOLUTION

It can be solved by arithmetic but algebra does the job 
faster and more simply. Suppose to make up a 12 per cent 67
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mixture we need x grams of the 3 per cent solution and y 
grams of the 30 per cent solution. Then in the first portion 
we have 0.03# grams of pure hydrogen peroxide, and in the 
second 0.3y grams, or altogether

0.03# +  0.3 y.
As a result we have {x +  y) grams of the solution in which 

there must be 0.12 (x +  y) grams of pure hydrogen peroxide.
We get the equation

0.03# +  0.3y =  0.12 (x +  y).
From this equation we find x =  2y, which means we have 

to take twice as much of the 3 per cent solution as of the 
30 per cent solution.

T ram cars and a  P ed estr ia n
PROBLEM

While walking along a tram line I noticed that a tramcar 
caught up with me every 12 minutes, and every 4 minutes a 
tramcar coming in the opposite direction passed me. We 
were both (tramcar and I) moving at a uniform rate.

Can you figure out what the time interval is between 
tramcars leaving their terminals?

SOLUTION

If the tramcars leave their terminals every x minutes, 
that means that x minutes after I have met a tramcar the 
following car arrives at that spot. If it is catching up with 
me, then during the remaining 12 — x minutes it has to 
cover the same distance that I do in 12 minutes. Thus, the 
distance that I cover in one minute is covered by the tram

12_xin ~ 12 minutes.

68



Now if the tram is coming towards me, then it will meet 
me 4 minutes after the preceding one, and during the remain
ing (x — 4) minutes it will cover the same distance that I 
do in 4 minutes. This means that the distance I cover in one
minute is covered by the tram in minutes.

We get the equation
\ 2 — x _  x — 4 

12 “

which yields x — 6. The tramcars start out every 6 minutes.
Here is another solution, actually arithmetical. Denote 

the distance between trams following one another by a. 
Then the distance between me and the tram coming towards 
me will diminish by the amount a/4 a minute (because 
together in 4 minutes we cover the distance, equal to a, 
between the tram that just passed and the next one). Now 
if a tram is catching up with me, then the distance between 
us diminishes every minute by a! 12. Now suppose that I 
moved ahead during one minute and then turned around and 
went back one minute (returning to the original spot). Du
ring the first minute the distance between me and the tram 
moving towards me would diminish by a!4, and during the 
second minute (when that same tram was now catching up 
with me) the distance would diminish* by a! 12. And so in 
two minutes the distance between us would decrease by

=  The same would occur if I stood still in one4 1 12 3
spot, since after all movements I returned to that spot any
way. And so if I didn’t move, then in one minute (not in
two) the tram would approach me by the amount — : 2 =  

=  ~  and the entire distance of a would be covered in 6o
minutes. Which means that a tram passes a person standing 
still every 6 minutes.
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R afts and a  S team b oat
PROBLEM

A steamboat covers the distance between a town A and a 
town B (located downstream) in 5 hours without making 
any[stops. Moving upstream from B to A at the same speed, 
it^covers the same distance in 7 hours (again making no 
stops). How many hours does it take a raft moving with 
the speed of the river current to get from A to B? n

A B

B

A B
_j

Fig. 10

SOLUTION

We denote by x the time (in hours) it takes the boat to 
cover the distance between A and B in standing water (at its
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own speed), and by y the time it takes the rafts to cover that 
distance. Then the boat does Mx of the AB distance in one 
hour, and the rafts (going with the current) do My of that 
distance. Therefore when the steamship goes downstream it 
covers Mx +  My of the AB distance, and going upstream 
(against the current) it does Mx — My, Now it is stated in 
the hypothesis of the problem that going downstream the 
ship does 1/5 of the distance in one hour, and going upstream, 
1/7. This gives us the following system of equations:

Note that in solving this system it is best not to get rid of 
the denominators, simply subtract the second equation from 
the first. This yields

1  =  —  
y ~  35

and so we get y =  35. The rafts cover the distance from A 
to B in 35 hours.

T w o C ans of C offee
PROBLEM

Two cans containing coffee have the same shape and are 
made out of the same tin. One can weighs 2 kg and is 12 cm 
high; the other weighs 1 kg and is 9.5 cm high. Find the net 
weight of the coffee in both cans.

SOLUTION
Denote the weight of the larger can by x, and that of the 

smaller one by y. Let the weights of the cans themselves be z 
and respectively. We then have the equations

jx  +  z — 2,
\y  +  t =  l. 71
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Since the weights of the contents of full cans are in the 
same ratio as their volumes, that is, as the cubes of their 
heights,* it follows that

f=iS-~2-02 or *=2-°v
Now the weights of the empty cans are in the same ratio 

as their total surface areas, which is to say, as the squares of 
their heights. Therefore

t  =  or z =  1.60L

Substituting the values of x and z into the first equation, 
we get the following system:

J2.02 y +  1.60* =  2,
I y +  t =  l.

Solving it, we find

^ = l r = 0 -95- * = °-05-
And so

x =  1.92, z =  0.08.
Thus, the net weight of the coffee in the larger can is 1.92 kg, 
and that in the smaller can is 0.94 kg.

A Q uestion  of D an cin g
PROBLEM

At a party, 20 people danced. Mary danced with seven 
partners, Olga with eight, Vera with nine, and so forth up to 72

* This proportion is applicable only when the tin of the cans is 
thin. This is because, strictly speaking, the outer and inner surfaces 
of cans are not similar; what is more, the height of the inside part of 
a can is, strictly speaking, different from the height of the can itself.
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Nina who danced with all the partners. How many men 
partners were there at the party?

SOLUTION
This is a very simple problem if the unknown is suitably 

chosen. Let us seek the number of girls rather than men: the 
number of girls is x:

1st, Mary danced with 6 +  1 partners,
2nd, Olga danced with 6 +  2 partners,
3rd, Vera danced with 6 +  3 partners,

#th, Nina danced with 6 +  # partners.

We get the following equation,
x +  (6 +  x) =  20

from which we find that x =  7 and hence that there were 
20 — 7 =  13 men at the party.

R e co n n a issa n c e  a t S ea
PROBLEM No. 1

A reconnaissance ship of a squadron is given the assign
ment to reconnoiter a portion of sea out 70 miles in the di
rection in which the squadron is moving. The squadron is 
moving at 35 miles per hour, the reconnaissance ship is 
doing 70 miles an hour. We have to find out how long it will 
take the reconnaissance ship to return to the squadron.

SOLUTION
Denote that number of hours by x. During this time the 

squadron advanced 35# miles and the reconnaissance ship 
did 70# miles. The reconnaissance ship did 70 miles and 
then a certain distance on the return leg of its mission, while 73
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the squadron simply covered the remaining part of its path. 
Together, they covered a distance of lOx +  35z, which is 
equal to 2«70 miles. This gives us an equation

lOx +  35z =  140,
whence we get

140 , l
x  ~  105 “  1 3

hours. The reconnaissance ship will return to the squadron 
in 1 hour and 20 minutes.

PROBLEM No. 2

A reconnaissance ship was ordered to reconnoiter a portion 
of the sea in the direction of motion of the squadron. The 
ship was to return to the squadron in three hours. How much 
time will elapse before the reconnaissance ship turns around 
on the return lap of its mission if it has a speed of 60 knots 
and the squadron has a speed of 40 knots?

SOLUTION

Suppose the reconnaissance ship has to turn around after 
x hours; this means it moved x hours away from the squadron, 
and was on its return mission for a^period of 3 — of hours. 
While all ships were moving in the^same direction, the re
connaissance ship, in x hours, covered a distance from the 
squadron equal to the difference between the distances that 
they covered, or a total of

60# — 40x =  20x.
On the return lap, the reconnaissance ship covered a dis

tance, returning to the squadron, of 60 (3 — x), whereas the 
squadron itself did 40 (3 — x). Together they did I0x> 
And so

60 (3 — x) +  40 (3 — x) =  20#
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from which we get

* = 2 t -
This means that the reconnaissance ship has to turn 

around 2 hours and 30 minutes after it left the squadron.

At the C ycle  T rack
PROBLEM

On a circular cycle track there are two cyclists going at 
unchanging speeds. When they go in opposite directions

Fig. 11

they meet every 10 seconds; when they go in the same direc
tion, one catches up with the other every 170 seconds. Find 
the speed of each cyclist if the circular track is 170 metres 
long.
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SOLUTION
If the speed of one cyclist is x, then in 10 seconds he cov

ers a distance of 10# metres. If the other cyclist is moving 
towards the first one, then during the time between meetings 
he covers the remaining portion of the circle, or 170 — iOx 
metres. If the other cyclist has a speed of y, then he does 
10y metres in 10 seconds. We have

170 -  10* =  10y.
Now if the cyclists are following one another, then the 

first one does 170# metres in 170 seconds, and the other one 
does 170y metres. If the first one is faster than the second 
one, he does one complete circle more than the second one 
before they meet again. We thus have

170* _  170y =  170.
Simplifying these equtions we get

x +  y =  17, x — y =  1
whence

x =  9, y =  8 (metres per second)

A C om p etition  of M o to rcy c lists
PROBLEM

In a motorcycle competition, one of three motorcycles that 
started out at the same time was doing 15 km less than the 
first one and 3 km more than the third, and arrived at the 
terminal point 12 minutes after the first machine and 3 min
utes before the third one. There were no stops en route.

It is required to find:
(1) the length of the course,
(2) the speed of each motorcycle,
(3) the time spent en route by each machine.
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SOLUTION
Although we are seeking seven unknowns, we will solve 

the problem by seeking two: we will set up a system of two 
equations in two unknowns.

Denote the speed of the second motorcycle by x. Then the 
speed of the first one is x +  15 and of the third x — 3.

The total path length we denote by y. Then the time en 
route comes out to 

y
x - \ - 15 

y_
X

y
x —3

We know that the second motorcycle took 12 minutes (or 
1/5 hour) more to cover the distance than the first. And so

y y _  1
x x-)-15 5 *

The third motorcycle took 3 minutes (or 1/20 hour) more 
to cover the whole distance than did the second, and so 
we have

y y ___ 1
x — 3 x 20 *

Multiply the second of these equations by 4 and subtract 
from the first to get

L ____v____4 I-*-____-M = 0 .
x x -)-15 \ x —3 x /

Divide all terms of this equation by y (this is a quantity 
that is not zero) and then get rid of the denominators. This 
yields
(x +  15) (x -  3) -  x (z -  3) -  Ax (x +  15)

+  4 (x +  15) (x -  3) =  0.

for the first motorcycle, 

for the second, 

for the third.
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Removing brackets and collecting terms, we get

and finally
3z -  225 -  0 

x =  75.
Knowing x, we can find y from tlie first equation:

y  y 1
"75 90* IT

or y =  90.
So now we have the speeds of the three motorcycles

90, 75, and 72 km per hour.
And the path length is 90 km.
Dividing the path length by the speed of each motorcycle, 

we can find the time en route:
1 hour for the first motorcycle,
1 h and 12 minutes for the second, 
1 h and 15 minutes for the third.

We have thus found all the seven unknowns.

A verage S p eed s
[PROBLEM

An automobile covers the distance between two cities at 
a speed of 60 km per hour, on the return route the driver 
does 40 km an hour. Find the average speed.

SOLUTION
The simplicity of th e : problem is illusive. Without 

looking deep into the conditions of the problem, many 
just calculate the average (arithmetic mean) between 60 
and 40 and get the half sum, or

- ^ ± ^  =  50.
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This “simple” solution would be correct if the trip there 
and back lasted the same time. But it is clear that the return 
trip (at a smaller speed) must have taken a longer time than 
the trip there. Taking that into consideration, we can see 
that 50 is not the answer.

True enough, an equation yields a different answer. It is 
easy enough to set up an equation if we introduce an auxi
liary unknown, namely the quantity I for the distance be
tween the cities. Denoting the sought-for average speed by 
x, we get the following equation:

21 _  I l 
x 60 +  40 '

Since I is not equal to zero, we can divide through by I 
to get

2 _ 1 1
x “  60 +  40

whence

60 +  40

48.

And so the correct answer is 48 and not 50 km an hour. 
If we worked the problem in literal notation (a for the 

speed there, and b for the speed on the return trip in kilo
metres per hour), we would get the equation

21 _  I I
x a ' b

whence for x we would have
2

This quantity is known as the harmonic mean between the 
quantities a and b.
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Thus, the average speed here is not given by the arithme
tic mean but by the harmonic mean of the speeds. For posi
tive a and b1 the harmonic mean is always less than the 
arithmetic mean:

a -\-  b 
~ 2 ~

as we have just seen in the numerical example (48 is less 
than 50).

H igh -Sp eed  C om puting M achines

We have been talking about equations and the fun of 
setting them up and solving problems. Now we bring com
puters into the discussion. You already know that computers 
have been taught to play chess (and checkers, or draughts, 
too). Mathematical machines can also perform such assign
ments as translating from one language to another (although 
the result still leaves much to be desired), the orchestration 
of a piece of music, and much more. The only thing required 
is to work out a program for the machine to follow.

We will not go into the programs for chess playing or 
translation from language to language, they are far too 
complicated. We will analyse only two very simple pro
grams. But first a few words are in order about the construc
tion of a computing machine.

In Chapter One we spoke of machines that are capable of 
performing many thousands (even millions) of operations a 
second. The part of the computer that does the actual com
putations is called the arithmetic unit. Besides that, every 
computer contains a control unit that organizes the work of 
the whole machine, and also a memory unit (also called a 
storage unit). The memory unit is a storage system for stor
ing numbers and conventional signals. And, finally, the 
computer is equipped with devices for the input of new digi-
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tal data and for the output of the final results. These results 
are in the form of a printout (in the decimal number system) 
on special cards.

We all know how sound can be recorded on records or on 
tape and then reproduced. But the recording of sound can 
be done only once. A new recording requires a fresh disc. 
A tape recorder performs this task somewhat differently: 
by magnetizing tape. Here the recorded sound can be repro
duced any number of times and if the recording is no longer 
needed, it can be erased and a new recording made in its 
place. The same tape may be used for recording many diffe
rent things, and each time the preceding recording is simply 
erased.

A similar principle is used in the memory units of compu
ters. Electric, magnetic and mechanical signals are used to 
record numbers and conventional signals on a special drum, 
tape or other device. The recorded number can be “read” 
at any time and if it is no longer needed, it can be erased 
and replaced by another number. The recording (storing) 
and reading of numbers or conventional signals takes but 
millionths of a second.

The memory of a computer may hold several thousand 
storage locations (memory cells), and each location may have 
tens of elements (say magnetic elements). In order to 
write numbers in binary (the binary system of notation), 
we agree that each magnetized element depicts the digit 
1 and each nonmagnetized element depicts the digit 0. Sup
pose each storage location of the memory unit has 25 ele
ments (or, as it is common to say, 25 binary digits); the 
first digit of the location denotes the sign of the number 
(+  or —), the next 14 digits serve to record the integral 
part of the number, and the last 10 digits record the fraction
al part of the number. Fig. 12 is a schematic diagram of 
two storage locations of the memory unit of a computer; 
each has a storage capacity of 25 digits. The magnetized 
elements are indicated by “+ ” signs, the unmagnetized
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elements by “—” signs. Let us examine the upper storage 
location (a dot indicates where the fractional part of a num
ber begins and a dashed line separates the first digit, which 
records the sign of the number, from the other digits). 
The recorded number reads, in binary, +1011.01 or, in the 
ordinary decimal system, 11.25.

Memory locations are also used to record instructions 
(commands) that make up the program. Let us see what kind

ii
'l+j-l-l-l-l-l-l-l-l-l-l+l-l+l+l-l+l-l-l-l-l-l-l-l-T

II

O peration  \ I  \ I I I I I
I-I-I-I-H+I+H-I-I-I+I+R-H+I+I+ -i-i+i-i+i+i:1 1 1 1 1 I

Fig. 12

of instructions there are for a so-called three-address compu
ter. In this case, to record an instruction the storage loca
tion is divided into 4 parts (indicated by dashed vertical 
lines in the lower storage location in Fig. 12). The first part 
serves to indicate the operation (operations are recorded 
in the form of numbers).

For example,

addition — operation 1,
subtraction —operation 2,
multiplication — operation 3, and so forth.

The instructions are deciphered as follows: the first por
tion of the location indicates the number of the operation, 
the second and third parts indicate the numbers of the stor
age locations (or addresses) from which numbers must be
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extracted in order to perform the operation, and the fourth 
part indicates the number of the location (the address) 
which is the destination of the final result. For example, 
in Fig. 12 (bottom row) we have, in binary, the numbers 
11, 11, 111, 1011 or, in the decimal system, 3, 3, 7, 11, 
which means: perform operation 3 (which is multiplication) 
on the numbers in the third and seventh memory locations, 
and then record (store) the result in the eleventh location.

From now on we will store the numbers and the instructions 
in the decimal system directly and not by means of operation
al symbols as in Fig. 12. For example, the instruction depict
ed in the lower row of Fig. 12 is written thus:

multiplications 3 7 11

Let us now examine two very simple programs:

Program. 1
(1) addition 4 5 4
(2) multiplication 4 4
(3) transfer of control 1
(4) 0
(5) 1

Let us see how the computer operates with these data 
recorded in the first five storage locations in its memory 
unit.

1st instruction: add the numbers in the 4th and 5th loca
tions and send the result back to the 4th location (in place 
of what was recorded there earlier). Thus the computer 
writes the number 0 +  1 =  1 in the 4th location. After the 
first instruction has been fulfilled, the 4th and 5th loca
tions have the following numbers:

(4) 1,
(5) 1.
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2nd instruction: multiply the number in the 4th location 
by itself (it is squared) and put the result, or l 2, on a card 
(the arrow indicates a printout of the final result).

3rd instruction: transfer of control to the 1st location. 
In other words, the instruction “transfer of control” means 
that all instructions must again be carried out in order, 
beginning with the first. So we again have the 1st instruc
tion.

1st instruction: add the numbers in the 4th and 5th loca
tions, and again record the result in the 4th location. Thus 
in the 4th location we have the number 1 +  1 =  2:

(4) 2,
(5) 1.

2nd instruction: square the number in the 4th location 
and write out the result, or 22, on a card (the arrow indi
cates a printout).

3rd instruction: transfer of control to the first location 
(which means a transfer to the 1st instruction again).

1st instruction: send the number 2 +  1 =  3 to the 4th 
location:

(4) 3,
(5) 1.

2nd instruction: print out the number 32.
3rd instruction: transfer of control to the 1st location and 

so on.
We see that the computer computes the squares of the 

integers and prints them out on a card. Note that it is not 
necessary to write in by hand the next new number because 
the machine goes through the sequence of integers and 
squares each of them. Following that program, the computer 
finds the squares of all whole numbers, say, from 1 to 
10 000 in the course of a few seconds or even fractions of 
a second.
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It must be noted however that actually the program 
for computing the squares of integers must be somewhat 
more complicated than that described above. In parti
cular this refers to the second instruction. The point is that 
printing the result on a card takes'much more time than com
puting a single operation. For this reason, the results are 
stored in free storage locations of the memory unit and 
are then later printed out on cards “at leisure”, so to say. 
Thus the first final result is stored in the 1st free location, 
the second result in the 2nd location, the third in the 3rd 
location, and so on. This was omitted in the description 
given above.

Another thing. The computer cannot be engaged for a long 
time computing squares because there are not enough loca
tions in the memory unit; also there is no way of “guessing” 
when the machine has computed enough squares to be able 
to turn it off on time (remember the computer does many 
thousands of operations per second). To handle this situa
tion, special instructions are included in the program to stop 
the computer at the right time. For example, the program 
may state that the computer is to work out the squares of 
all numbers from 1 to 10 000 and then stop.

There are of course more sophisticated instructions that 
we will not go into here so as not to complicate our discus
sion.

Here is a real program for finding the squares of all inte
gers from 1 to 10 000:

Program la
(1)
(2)
(3)
(4)
(5)
(6) 
(7)

addition 8 9 8
multiplication 8 8 10
addition 2 6 2
conditional jump 
stop

8 7 1

10 000
0 0 1
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(8) 0
(9) 1

(10) 0
( 11) 0
( 12) 0

The first two instructions don’t differ much from those 
we had in our simplified program. After these two instruc
tions are handled, the 8th, 9th and 10th locations will have 
the following numbers:

(8) 1 
(9) 1 

(10) I 2

The third instruction is very interesting: the order is to 
add the contents of the 2nd and 6th locations and write the 
results in the 2nd location, which then looks like this:

(2) multiplication 8 8 11.

After the third instruction is carried out, the second instruc
tion is altered; to put it more exactly, one of the addresses 
of the 2nd instruction is changed. We will soon learn why 
that is done.

Fourth instruction: conditional jump (or conditional
transfer of control); this is in place of the 3rd instruction 
in the earlier program. This instruction is performed thus: 
if the number in the 8th location is less than that in the 
7th, then control jumps to the 1st locations; otherwise the 
next (5th) instruction follows. In our case, 1 <  10 000 and 
so the control is transferred to the 1st location. So we again 
have the 1st instruction.

After the 1st instruction is carried out, 2 appears in the 
8th location.
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The second instruction wil] now look like this:
(2) multiplication 8 8 11

and it consists in the number 22 being sent to the 11th 
location. It is now clear why the 3rd instruction was carried 
out earlier: the new number, that is 22, does not go to the 
10th location, which is already occupied, but to the next 
one. After instructions one and two have been performed, 
we get the following numbers:

(8) 2
(9) 1

(10) l 2
(11) 22

After the third instruction, the second location takes on 
the form

(2) multiplication 8 8 12
which means the computer is ready to write the new result 
in the next, or 12th, location. Since the 8th location still 
has a smaller number than the 9th location, the 4th instruc
tion is again to transfer control to the 1st location.

Now, after carrying instructions one and two, we get
(8) 3
(9) 1

(10) l 2
(11) 22
(12) 32

How long will the computer keep finding the squares of 
numbers? Until the number 10 000 appears in the 8th loca
tion, which means until all the squares of the numbers from 
1 to 10 000 have been found. At this point the 4th instruc
tion will not. transfer control to the 1st location (this is b§-
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cause the 8th location will have a number that is not less than 
but equal to the number in the 7th location), and after 
instruction four is carried out, the computer will take up 
instruction five: stop (the computer goes off).

Let us now consider a more involved program: the solu
tion of a system of equations. We will examined simplified 
version.|The reader, if he wishes, can figure out how the 
complete program would appear.

Given a system of equations:
[ ax +  by =  c,
{ dx +  ey =  f.

This system can readily be solved as
_ ce — bf ___ af — cd
X ae— bd 1 ^  ae— bd

A few tens of seconds and you will probably be able to'solve 
this system for specified numerical values of the coefficients 
a, b, c, dy e, /. Now a computer can work out thousands of 
such systems in one second.

Suppose we have the following program. Given: several 
systems of equations:
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with numerical values of the coefficients a, b9 c, d, e, /, 
a', b\ ... .

Here is an appropriate program:

Program 2

(1) X 28 30 20 (14) + 3 19 3 (26) a
(2) X 27 31 21 (15) + 4 19 4 (27) b
(3) X 26 30 22 (16) + 5 19 5 (28) c
(4) X 27 29 23 (17) + 6 19 6 (29) d
(5) X 26 31 24 (18) jump 1 (30) e
(6) X 28 29 25 (19) 6 6 0 (31) f
(7) - 2 0 21 20 (20) 0 (32) a'
(8) - 2 2 23 21 (21) 0 (33) b'
(9) - 2 4 25 22 (22) 0 (34) c'

(10) : 20 21 (23) 0 (35) d'
(H) : 22 21 (24) 0 (36) e'
(12) +  1 19 1 (25) 0 (37) r
(13) +  2 19 2 (38) a

1st instruction: form the product of the numbers in the 
28th and 30th locations, then send the result to the 20th 
location. In other words, in the 20th location we get the 
number ce.

Instructions two to six are carried out in a similar fashion. 
After they have been carried out we get the following num
bers in locations 20 to 25:

(20) ce
(21) bf
(22) ae
(23) bd
(24) af
(25) cd
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Seventh instruction: from the number in the 20th location 
subtract the number in the 21st location, and again send 
the result (ce — bf) to the 20th location.

Instructions eight and nine are carried out similarly. 
Thus, in the locations 20,21, 22 we have the following num
bers:

(20) ce -  bf
(21) ae — bd
(22) af — cd 

Instructions 10 and 11: the quotients
ce— bf a f— cd----- rj- and —-— r—ae — bd ae— bd

are formed and are printed out on a card (which means they 
are given as a final result). These are the values of the 
unknowns obtained from the first system of equations.

The first system has thus been solved. Why are any further 
instructions needed? The next portion of the program (loca
tions 12 to 19) is needed to prepare the computer for solving 
the second system of equations. Let us see liow this is done. 
Instructions 10 to 17 consist in the following: to the con
tents of locations 1 to 6 we add the material in location 19, 
and the results again remain in locations 1 to 6. Thus, after 
the 17th instruction has been carried out, the first six loca
tions will look like this:

(1) X 34 36 20
(2) X 33 37 21
(3) X 32 36 22
(4) X 33 35 23
(5) X 32 37 24
(6) X 34 35 25

Instruction 18: transfer of control to location one.
In what way do the new notations in the first six locations 

differ from the earlier material? In that the first two address-
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es in these locations have the numbers 32 to 37 instead 
of 26 to 31. This means that the computer will again perform 
the same operations, but this time it will take numbers from 
locations 32 to 37 (instead of from 26 to 31) where the coef
ficients of the second system of equations are located. The 
computer thus solves the second system of equations, and 
then goes on to the third system, and so forth.

From what we have seen it is clear that the most important 
thing is to write a proper program. By itself the computer 
is quite helpless and can’t do anything. All it can do is car
ry out a program of instructions. There are programs for 
computing roots, logarithms, sines, for solving equations 
of high degrees and many more. There are even programs 
for playing chess, as we have seen, and for translating from 
one language into another, albeit rather poorly. A computer 
can do a lot of things, and of course the more complicated 
the assignment, the more involved is the program of instruc
tions.

We conclude with a word about so-called compiling rou
tines, which are programs by means of which the computer 
itself can work out a program for solving some problem. 
This greatly simplifies the writing of programs, which can 
often be an extremely time-consuming matter.



Chapter three 

AS A N  AID TO ARITHMETIC

It occasionally happens that arithmetic cannot by it
self give rigorous proof of certain of its own assertions. 
In such cases it has to resort to the generalizing techniques 
of algebra. Propositions of this nature that require the help 
of algebra include, for example, many of the rules of abridged 
operations, the curious properties of certain numbers, 
criteria for divisibility of numbers, and so on. This chapter 
will be devoted to an examination of a few such problems.

In stan tan eou s M u ltip lica tion

Calculating prodigies (sometimes called lightning cal
culators) often simplify their computational work by resort
ing to simple algebraic manipulations. For example,"to 
square 988 one does as follows:
988-988 =  (988 +  12).(988 -  12) +  122

=  1000-976 +  144 =  976 144
It is easy to see that the calculator here made use of the 

familiar algebraic rule
a2 =  a2 — b2 +  b2 =  (a +  b) (a — b) +  b2.

We can make good use of this rule in oral^calculations. 
For example,

272 =  (27 +  3) (27 -  3) +  3« =  729,
63* -  66-60 +  3* =[3969,

92



182 =  20-16 +  22 =  324,
372 =  40-34 +  32 =  1369,
482 =  50-46 +  22 =  2304,
542 =  58-50 +  42 =  2916.

To multiply 986 by 997, we do as follows:
986-997 =  (986 -  3)-1000 +  3-14 =  983 042.

What is this device based on? Write the factors as 
(1000 -  14) -(1000-3)

and then multiply the two binomials by the rules of algebra: 
1000-1000- 1000-14-1000-3+ 14-3

And now a few more manipulations give us 
1000 (1000-14) -  1000 -3 +  14-3

=  1000-986 -1000* 3 +  14-3
=  1000 (986-3) +  14-3

The last line depicts the device that the calculator uses. 
Here is a nice way of multiplying two three-digit numbers 

in which the number of tens is the same, whereas the sum 
of the units digits comes to 10. For example, to multiply

783-787
do as follows:

78-79 =  6162, 3-7 =  21

616 221.
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The reasoning behind this procedure becomes clear from 
the following manipulations:
(780+ 3) (780 +  7)

=  780-780 +  780-3 +  780-7 +  3-7
=  780-780+ 780-10 +  3-7
=  780(780 +  10) +  3-7 =  780-790 +  21

=  61G 200 +  21.
Another technique used in such multiplications is still 

simpler:
783-787 =  (785 -  2) (785 +  2) =  7852 -  4 =  616 225 -  4

=  616 221.
In this example, we had to square the number 785.

Here is a fast way to square numbers ending in 5:
352; 3-4 =  12. Answer: 1225.
652; 6-7 =  42. Answer: 4225.
752; 7-8 =  56. Answer: 5625.

The rule here is to multiply the lens digit by a number 
that equals that digit plus one; then adjoin 25 to the prod
uct.

This device is based on the following reasoning. If the 
number of tens (the tens digit) is a, then the total number 
can be depicted thus:

10a +  5.
The square of this number (the square of a binomial) is 

100a2 +  100a +  25 =  100 a (a +  1) +  25.
The expression a (a +  1) is the product of the tens digit 
by the closest greater number. To multiply a number by 
100 and add 25 is the same as adjoining 25 to that number.
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This same procedure yields a simple method for squaring 
a number that consists of a whole number and y  . For 
example,

( 3 - i ) 2 =  3.52=12.25 =  1 2 i ,

( 7 - ^ ) 2 =  5 6 | ,  ( 8 - ) 2 =  7 2 l  and so on.

T he D ig its  1 3 5 , and 6

You have probably noticed that when multiplying a series 
of numbers ending in unity or five we get a number ending 
in that same digit. It is not so well known that the same 
holds true for the number 6. This means, incidentally, that 
any power of a number ending in 6 also ends in 6.

For example, 462 =  2116, 463 =  97 336.
This peculiarity of 1, 5, and 6 can be explained algebra

ically. Let us examine 6.
Numbers ending in 6 may be depicted thus:

10a +  6, 106 +  6 and so on,
where a and 6 are whole numbers.

The product of two such numbers yields
100a6 +  606 +  60a +  36

=  10 (10a& +  66 +  6a) +  30 +  6
=  10(10a& +  66 +  6a +  3) +  6.

So we see that the product is made up of a certain number 
of tens^and the number 6, which, quite naturally, appears 
at the end.

The same type of proof can be applied to the numbers 1 
and 5.
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The foregoing permits ns to assert that

3862567 ends in 6,
815723 ends in 5,
4911732 ends in 1, and so forth.

T he N um bers 2 5  and 7 6

Now there are two-digit numbers that have the same 
property as 1, 5, and 6. They include the number 25 and— 
most likely a surprise to most readers—the number 76. 
Any two numbers ending in 76 yield a product that also 
ends in 76.

Let us prove this fact. The general expression for such 
numbers is

100a +  76, 1006 +  76, and so on.
We now multiply together two such numbers to get 

10 000a6 +  7 6006 +  7 600a +  5776
=  10 000a6 +  7 6006 +  7 600a +  5 700 +  76

=  100 (100a6 +  7 6 6 + 76a +  57) +  76.
The proposition is established: the product will end in 

the number 76.
From this it follows that any power of a number ending 

in 76 will be a number ending in 76:
376? =  141 376, 5763 =  191 102 976, and so forth.

In fin ite  “ N u m bers”

There are also longer strings of digits that appear at the 
end of certain numbers and again appear in their product. 
We will now show that there are an infinity of such strings 
of numbers. 96

96



We know two-digit strings (groups) of digits that have 
this property: 25 and 76. To find three-digit groups, adjoin 
in front of 25 or 76 a digit such that the resulting three- 
digit group of digits has the required property.

What digit should we adjoin to the number 76? Let us 
denote it by A:. Then the desired three-digit number is

100ft +  76.
The general expression for numbers ending in this group of 
digits is:

1000a 4- 100ft +  76, 10006 + 100ft +  76 and so on.
Let us multiply together two numbers of this type. We get 
1 000 000a6 +  100 000aft +  100 0006ft +  76 000a

+  76 0006 +  10 000ft2 +  15 200ft +  5 776.

All terms except the last two end in at least three zeros. 
For this reason the product ends in 100ft +  76 if the differ
ence
15 200ft +  5 776 -  (100ft +  76) =  15 100ft +  5700

=  15 000ft +  5000 +  100(ft +  7)
is divisible by 1000. Obviously this will occur only when 
ft =  3.

So the sought-for group of digits is of the form 376, which 
means that any power of 376 will end in 376. An example is

3762 =  141 376.
If we now want to find a four-digit string of digits with 

the same property, we have to adjoin another digit in front 
of 376. Denote it by I and we have the following problem: 
for what I will the product

(10 000a +  1000Z +  376) (10 0006 +  1000Z +  376)
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end in 1000/ +  376? If we remove the brackets in this prod
uct and discard all terms ending in four zeros and more, 
then we get the terms

752 000Z +  141 376.
The product ends in 1000/ +  376 if the difference 
752 000/ +  141 376 -  (1000/ +  376)

=  751 000/ +  141 000 
=  (750 000/ +  140 000) +  1000 (/ +  1)

is divisible by 10 000. This is obviously the case only 
when / =  9.

And so the sought-for four-digit group is 9376.
To this four-digit group we can adjoin another digit by 

following the reasoning given above. And we get 09 376. 
Taking another step, we find the group of digits 109 376, 
then 7 109 376, and so on.

This adjoining of digits on the left can be continued 
indefinitely. It yields a number with an infinite number 
of digits:

... 7 109 376.
Such “numbers” can be added and multiplied by the usual 

rules; this is because ;-they are written from right to left 
and, as we know, addition and multiplication by columns 
is also performed from right to left so that in the sum and 
the product of two such numbers we can compute one digit 
after another for as many digits as we desire.

It is rather surprising to find that the above infinite 
“number” satisfies the equation

x2 =  x.
Indeed, the square of this “number” (the product of the 
number into itself) ends in 76 since each factor ends in 76; 
for the same reason, the square of the written “number”
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ends in 376; it ends in 9376, and so on. In other words, as 
we compute one digit after another in the “number” x2, 
where x =  ... 7 109 376, we will get the same digits as we 
have in z, so that x2 =  x.

We considered groups of digits that end in 76.* If similar 
reasoning is carried out with respect to groups of digits 
ending in 5, we get the following digit groups:

5, 25, 625, 0625, 90 625, 890 625, 2 890 625 and so on.

This enables us to write down another infinite “number”
... 2 890 625

that likewise satisfies the equation x2 =  x. It may be shown 
that this infinite “number” is equal, as it were, to

(((52)2)2)2'

In the language of infinite “numbers” this interesting 
result can be stated thus: the equation x2 =  x also has 
(besides the ordinary solutions x =  0 and x =  1) two “infi
nite” solutions

x =  ... 7 109 376 and x =  ... 2 890 625 

and no other solutions (in the decimal system of notation). **

* Note that the two-digit group 76 may be found via reasoning 
similar to that given above: all one needs to do is find the digit to be 
adjoined on the left to the digit 6 so that the resulting two-digit group 
has the desired property. Therefore, the “number” ... 7 109 376 can be 
obtained by adjoining digits to 6 on the left one after another.

** Infinite “numbers” may also be considered in systems of nume
ration other than the decimal system. Numbers considered in a sys
tem of numeration with base p are termed p-adic numbers.
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A d d ition a l P aym en t
A PROBLEM OF FOLKLORE

In days of old, two cattle dealers sold a herd of oxen and 
received as many rubles for each ox as there were oxen in 
the herd. They then spent this money to buy a herd of sheep 
at 10 rubles apiece and one lamb. They divided the lot 
in half and one got an extra sheep and the other took the 
lamb and received from his companion a certain sum of 
money. How much did this additional payment come to 
(it is assumed that it came to a whole number of rubles)?

SOLUTION

This problem is not amenable to immediate translation 
into the language of algebra, and no equation can be set 
up for it. So one has to rely on a sort of free-wheeling mathe
matical reasoning. But algebra gives arithmetic a helping 
hand here too.

The price of the herd in rubles is a perfect square since 
the herd was acquired with money obtained from the sale 
of n oxen at n rubles per ox. One of the two dealers got an 
extra sheep, which makes the number of sheep odd; also, 
for this reason, the number of tens in n2 is odd. What is 
the units digit?

It can be shown that if in a perfect square the tens digit 
is odd, then the units digit in that number can only be 6.

True enough, for the square of any number made up of 
a tens and b units, or (10a +  b)2, is

100a2 +  20a6 +  b2 =  (10a2 +  2ab) 40 +  b2.
There are 10a2 +  2ab tens in this number, and then there 

are some tens in b2. But 10a2 +  2ab is divisible by 2 and 
so is an even number. Therefore the number of tens in 
(10a +  b)2 will be odd only if there turns out to be an odd 
number of tens in b2. Now recall what b2 is. This is the
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square of the units digit, which means it is one of the fol
lowing 10 numbers:

0, 1, 4, 9, 16, 25, 36, 49, 64, 81.
Of these, only 16 and 36 (both ending in 6) have an odd 

number of tens, which means the perfect square
100a2 +  20 ab +  62

can have an odd number of tens only if it ends in 6.
It is now easy to find the answer to our problem. It is 

clear that the lamb went for 6 rubles. Hence the dealer that 
got the lamb received 4 rubles less than the other one. To 
make the shares equal, the owner of the lamb is due 2 rubles 
from his partner.

The additional payment is thus 2 rubles.

D iv is ib ility  by 11

Algebra is a great help in finding criteria for the divisibil
ity of a number by some divisor without performing the 
division. The criteria of divisibility by 2, 3, 4, 5, 6, 8, 9, 
and 10 are well known. Let us examine divisibility by 11; 
it is rather simple and of practical value.

Suppose a multidigit number N has a units, b tens, c 
hundreds, d thousands, and so on, or
N =  a +  106 +  100c +  lOOOd +  ...

=  a -f- 10(6 -f- 10c -f- lOOd—|- ...),
where the dots stand for the sum of higher orders. From 
N we subtract the number 11(6 +  10c +  lOOd +  ...), 
which is a multiple of 11. Then the resulting difference, 
which is readily seen to be equal to

a -  6 -  10 (c +  lOd +  ...),
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will have the same remainder upon division by 11 as the 
number N. Adding to this difference the number 11 (c +  
+  lOd +  ...), which is divisible by 11, we get the number

cl — b +  c +  10(d +  ...),
which also has the same remainder upon division by 11 as 
N . From it we subtract the number ll(d  +  ...), which is 
divisible by 11, and so on. We finally get

cl — b +  c — d +  ... — (# +  c +  ...) — (b +  d +
This number has the same remainder after dividing by 
11 as does the original number N.

From this we get the following criterion for divisibility 
by 11: from the sum of all digits in odd sites, subtract the 
sum of all digits standing in even sites; if the difference 
is 0 or a number (positive or negative) divisible by 11, 
then the number being tested is a multiple of 11; otherwise, 
our number is not exactly divisible by 11.

Let us test the number 87 635 064:
8 + 6  +  5 +  6 =  25,
7 +  3 +  0 +  4 =  14,

25 -  14 =  11.
Thus, the given number is divisible by 11.

There is another procedure for determining divisibility 
by 11 which is convenient for numbers that are not very 
long. It consists in the number under test being split from 
right to left into groups (or blocks) of two digits each and 
then the groups being added. If the resulting sum is exactly 
divisible by 11, then the original number is a multiple 
of 11, otherwise it is not. Suppose we wantato test the number 
528. Dividing it into the appropriate groups of two (5/28) 
and adding the groups, we get

5 +  28 =  33.
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Since 33 is exactly divisible by 11, so also is the number 
528:

528 : 11 =  48.
We now prove this criterion of divisibility. Split a multi- 

digit number N into groups of digits. We obtain two- 
digit (or one-digit *) numbers which we designate from 
right to left as a, 6, c, and so on, so that the number N can 
be written as
N =  a +  1006 +  10 000c +  ... =  a +  100(6 +  100c +  ...).
Subtract from N the number 99 (6 +  100c + . . . ) ,  which 
is divisible by 11. The resulting number

a +  (6 +  100c +  . . .) =  a +  6 +  100 (c +  . . .)
will have the same remainder, when divided by 11, as the 
number N. From this number we, subtract 99 (c +  . . .), 
which is divisible by IT, and so on. Finally, we find that the 
number N has the same remainder upon division by 11 as 
the number

a +  6 +  c +  . . . .

A L ice n se  Num ber
PROBLEM

Three students of mathematics out for a stroll noticed 
a car break the traffic regulations. Not one of the students 
noticed the number on the license plate (it was a four-digit 
number), but, being mathematicians, they noticed some 
peculiarities about the number. One recalled that the first 
two digits were the same. A second recalled that the last 
two digits were also alike. And finally the third student

* If the number N had an odd number of digits, the last (leftmost) 
group will be a one-digit block. Besides, a block of the form 03 should 
also be regarded as a one-digit number 3.
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maintained that the four-digit number was a perfect square. 
Is this information enough to find out the number on the 
license plate?

SOLUTION
Denote the first (and second) digit of the desired number 

by a, the third (and fourth) by 6. Then we have the number
1000a +  100a +  106 +  6 =  1100a +  116 =  11 (100a +  6).
This number is divisible by 11 and so, being a perfect square, 
is also divisible by l l 2. Which means the number 100a +  
+  6 is divisible by 11. Using either one of the two earlier 
devised criteria for divisibility by 11, we find that 11 di
vides the number a +  6. And this means that

a +  6 =  11
since each of the digits a, 6 is less than ten.

The last digit 6 of the number, which is a perfect square, 
can assume only the values

0, 1, 4, 5, 6, 9.
And so for the digit a, which is equal to 11 — 6, we get 
the following possible values:

11, 10, 7, 6, 5, 2.
The first two are unsuitable and that leaves us the following 
possibilities:

6 =  4, a =  7;
6 =  5, a =  6;
6 =  6, a == 5j 
6 =  9, a =  2.

We see that the license number can only be one of the fol
lowing four:

7744, 6655, 5566, 2299.
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But the last three of these numbers are not perfect squares: 
the number 6655 is divisible by 5 but not by 25; the number 
5566 is divisible by 2 but not by 4; the number 2299 =  
=  121 -19 is not a square either. That leaves only one num
ber, 7744 =  882, which is the solution.

D iv is ib ility  by 1 9

Justify the following criterion for divisibility by 19. 
A number is divisible by 19 if and only if the number of 

tens added to twice the number of units is divisible by 19.

SOLUTION 
Any number N may be expressed as

N =  lOx +  y
where x is the number of tens (not the tens digit but the 
total number of integral tens in the whole number), and 
y is the units digit. We have to show that N is divisible by 
19 if and only if

N' =  x +  2y
is a multiple of 19. To do this, multiply N f by 10 and sub
tract N from the product to get

10A' — N =  10 (x +  2y) -  {iOx +  y) =  19y.
From this it is clear that if N r is a multiple of 19, then

N =  10N' -  19y
is exactly divisible by 19; and conversely, if N is exactly 
divisible by 19, then

10 N' =  N +  19 y
is a multiple of 19 and then, quite obviously, N' too is 
exactly divisible by 19.
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Suppose we have to determine whether 19 divides the 
number 47 045 881 or not.

Apply our divisibility criterion in succession:

4 704 58811
+  2

47045| 90 
+  18 

47 061 3 
+ 6 

47112 
+  4 

4715 
+ 10
517 

+  14 
19.

Since 19 is exactly divisible by 19, it follows that so also 
are the numbers 57, 475, 4712, 47 063, 470 459, 4 704 590, 
47 045 881.

So the original number is indeed divisible by 19.

A T h eorem  of S o p h ie  G erm ain

Here is a problem posed by the eminent French mathema
tician Sophie Germain.

Prove that every number of the form a4 +  4 is a composite 
number (provided a is not equal to 1).
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SOLUTION
The proof follows from the transformations 

a4 +  4 =  a4 +  4a2 +  4 — 4a2 =  (a2 +  2)2 — 4a2 =
=  (a2 +  2)2 -  (2a)2 =  (a2 +  2 -  2a) (a2 +  2 +  2a).

It will be seen that the number a4 +  4 may be expressed 
as a product of two factors that are not equal to the number 
itself or to unity *; in other words, the number is composite.

C om p osite  N um bers

There are an infinity of the so-called primes (prime 
numbers), which are integers exceeding unity that cannot 
be divided by any whole number other than unity and the 
integer itself.

The sequence of primes begins 2, 3, 5, 7, 11, 13, 17, 19, 
23, 29, 31, . . ., and, as the dots indicate, extends indefini
tely. These primes interpose themselves in the range of 
composite numbers, and split the natural-number sequence 
into more or less extended portions of composite numbers. 
How long are these portions? For example, can we find 
a sequence of, say, a thousand composite numbers with not 
a single prime among them?

It can be proved, although this may seem improbable, 
that straight strings of composite numbers between primes 
may be of any imaginable length. There is no bound to 
the length of such strings: they may consist of a thousand, 
a million, a trillion and so on composite numbers.

For the sake of convenience, we will make use of the 
symbol ra!, which stands for the product of all numbers from 
1 to n inclusive. For instance, 5! =  1*2 *3 *4 *5. We will

* Unity, because a2 +  2 — 2a =  (a2 — 2a +  1) +  1 =  (a — l)2 +  
+  1 ^  1, if a ^  1.
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now prove that the sequence
l{n +  1)! +  2], [(72 +  1)! +  3], [{n +  1)! +  4], . . .

up to [(72 +  1)! +  72 +  1] inclusive
consists of 72 successive composite numbers.

These numbers follow one another in the sequence of the 
natural numbers since each succeeding one is 1 greater 
than the preceding number. It now remains to prove that 
they are composite.

The first number
(72 +  1)! +  2 =  1.2 .3 .4-5-6-7- . . . • (72 +  1) +  2

is even since both terms contain the factor 2. Now, every 
even number greater than 2 is a composite number.

The second number
(72 +  1)! +  3 =  I .2 .3 .4 .5 . . . .  • (72 +  1) +  3

consists of two terms, each of which is a multiple of 3. 
Hence, this number too is composite.

The third number
(72 +  1)! +  4 =  1-2 .3 .4 .5. . . . * (72 +  1) +  4

is exactly divisible by 4 because it consists of terms that 
are multiples of 4.

In similar fashion, we find that the number
(72 +  1)! +  5

is a multiple of 5, and so forth. In other words, each number 
of our sequence contains a factor that is different from unity 
and from itself; which means it is a composite number.

If you want to write, say, five composite numbers in 
succession, all you need to do is substitute 5 for n in the 
sequence given above. You will then get the following se
quence:

722, 723, 724, 725, 726.
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This is not the only sequence made up of five composite 
numbers. There are other sequences, such as

62,63, 64,65, 66.
Or take the smaller numbers

24, 25, 26, 27, 28.
Let us now try to solve the following problem.
Write down a sequence of ten composite numbers.

SOLUTION
Proceed on what has been said. We establish the fact 

that for the first of the desired ten numbers we can take
1.2 .3 -4 * . . .  40 41 +  2 =  39 816 802.

The desired sequence may then look like this:
39 816 802, 39 816 803, 39 816 804 and so on.

There are however sequences of much smaller composite 
numbers. For instance, there is a sequence of thirteen com
posite numbers already in the second hundred:

114, 115, 116, 117 and so on up to 126 inclusive.

T he N um ber of P r im es

The existence of arbitrarily long sequences of composite 
numbers may seem to suggest that the sequence of primes 
cannot be continued indefinitely. The following proof of 
the infinitude of prime numbers will clarify this doubt.

The proof belongs to the ancient Greek mathematician 
Euclid and may be found in his Elements. The proof given 
there is one known as indirect proof, or reductio ad absur- 
dum proof. Suppose the sequence of primes is finite; denote 
the last prime in the sequence by N . Then form the product

I .2 .3 .4 .5 .6 .7 . . . .  W =  N\
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and add unity. This gives us 
N\ +  1.

Since this is an integer, it must contain at least one prime 
factor, which means it must be divisible by at least one 
prime. But, by hypothesis, the sequence of primes does not 
exceed N, yet the number N\ +  1 cannot be exactly divid
ed by any number less than or equal to N, for every time 
we obtain a remainder of 1.

Thus, we cannot assume that the sequence of primes is 
finite: the assumption leads to a contradiction, and this 
means that no matter how extended the string of composite 
numbers in the sequence of natural numbers, we may rest 
assured that at the end of the sequence we will encounter an 
infinity of primes.

T he L a rg est P rim e D isco v ered  S o  F ar

It is one thing to be convinced of the existence of arbitra
rily large prime numbers and quite a different thing to know 
exactly what numbers are prime. The larger the natural 
number, the greater the amount of computation that has 
to be performed in order to find out whether it is prime 
or not. The following number is the largest known prime 
to date:

22281_^
It has about seven hundred digits and a powerful modern 
computer was used to perform the necessary computations. 
(See Chapters 1, 2.)

A R e sp o n s ib le  C a lcu la tio n

Mathematical calculations sometimes involve such unwiel
dy arithmetic that only algebraic methods can save the 
situation. Suppose we want to find the result of the fol-

110



lowing operations:
2

90 000 000 000

A word of explanation: this computation is necessary to 
find out whether engineers who deal with velocities of bodies 
that are small compared to the speed of propagation of 
electromagnetic waves can make use of the familiar law of 
composition of velocities without taking into account the 
changes brought about by the mechanics of relativity 
theory. In classical mechanics, a body participating in two 
motions in the same direction with velocities vx and v2 
kilometres per second has a velocity of (vx +  v2) kilometres 
a second. Now the new mechanics gives the velocity of the 
body as

v x +  v 2 kilometres per second,

where c is the velocity of light in a vacuum (it is equal 
approximately to 300 000 kilometres a second). To take 
an example, the velocity of a body taking part in two motions 
in the same direction, each with a velocity of one kilometre 
per second, comes out, via the old classical mechanics, to 
two kilometres per second, and via the new mechanics, to

--------------------- kilometres per second.
90 000 000 000

By how much do these results differ? Is the difference such 
that it can be detected by extremely sensitive instruments? 
That is precisely why we have to perform this calculation.

We will carry it out in two ways: first in the usual way, 
arithmetically, and then by means of algebraic procedures. 
A mere glance at the long rows of figures in the arithmetic 
approach convinces us of the undoubted advantages of algebra.
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To begin with, we manipulate our double-decker fraction 
into better shape:

2 _  180 000 000 000 
1 ~  90 000 000 001 •

1 +  90 000 000 000
We now carry out the division of the numerator by the 
denominator:

180000 000 000 | 90 000 000001 
90000000 001 1.999 999 999 977...

899 999 999 990 
810 000 000 009 

899 999 999 810 
810 000000 009 
899 999 998010 
810 000 000 009 
899 999 980010 
810 000 000 009 
899 999 800 010 
810 000 000009 
899 998000 010 
810 000 000 009 
899 980000010 
810 000 000 009 
899 800 000010 
810 000 000 009 
898 000 000010 
810 000000 009 
880 000 000 010 
810 000000 009 
700 000 000 010 
630 000 000 007 

70 000 000 003

112



This is clearly a monotonous, gruelling task where errors 
can crop up at any stage. Yet it is important when solving 
this problem to note the exact point at which the sequence 
of nines is broken and a different sequence of digits sets in.

Now notice how easily algebra handles the situation. 
It makes use of the following approximate equality: if 
a is an extremely small fraction, then

where the symbol «  stands for “approximately equal to”.
It is very easy to see that this assertion holds true: compare 

the dividend 1 with the product of the divisor by the quo
tient:

1 =  (1 +  a) ( 1 -  a)
or

1 =  1 — a2.
Since a is a very small fraction (for example, 0.001), it is 
clear that a2 is a still smaller fraction (0.000001) which can 
be disregarded.

Now let us apply the above to our calculation: * 
______ 2_______ __ 2
1-|-----------   i_i____-—

^  90 000 000 000 ^  9-1010
«  2 (1 — 0.111 . .. . 10~10) =  2 -  0.0000000000222 . . .

=  1.9999999999777 ___
The result is the same as we obtained earlier, but the 

computation is a much shorter one.
The reader is probably curious to learn of what signifi

cance this result is in the problem of mechanics posed above.
* We now make use of the approximate equality

A
1 +  fl -4(1 — a).
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It shows that due to the smallness of the velocities under 
consideration as compared with the velocity of light, it is 
hardly possible to detect any departure from the old law of 
composition of velocities. Even with such great velocities as 
one kilometre per second, a difference shows up only in the 
11th digit of the number being determined (in ordinary 
engineering calculations, one confines himself to 4 to 6 
digits). We can therefore state very definitely that the new 
Einsteinian mechanics practically changes nothing in engi
neering calculations that deal with the “slow” (compared 
with the velocity of light) bodies. There is, however, a field 
of modern life where this conclusion calls for caution. It 
is the field of space flight. Today artificial satellites and 
space vehicles have reached velocities of the order of 
10 km/s. Here the discrepancy between classical and Ein
steinian mechanics appears in the ninth digit. And there 
are higher velocities in the offing . . . .

W hen I t’s  E a sier  W ithout A lgebra

Along with cases where algebra is a great aid to arithme
tic, there are other cases where it merely complicates mat
ters. A true knowledge of mathematics consists in the 
ability to deal with mathematical tools so as always to take 
the straightest and most reliable path, irrespective of 
whether the procedure is taken from arithmetic, algebra, 
geometry, or any other branch. It will be useful therefore 
to examine a case where resorting to algebra can only con
fuse the solver. The following is an instructive example 
of such a problem.

Find the smallest of all numbers which when divided

by 2 yield a remainder of 1
by 3 yield a remainder of 2
by 4 yield a remainder of 3
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by 5 yield a remainder of 4
by 6 yield a remainder of 5
by 7 yield a remainder of 6
by 8 yield a remainder of 7
by 9 yield a remainder of 8

SOLUTION
I was asked to work out this problem with the words: 

“How would you go about solving it? There are too many 
equations; i t ’s easy to get all mixed up.”

The trick is simply this: no equations, no algebra —it 
can be handled very neatly by a simple arithmetical piece 
of reasoning.

Add one to the desired number. Then what remainder 
does it yield when divided by 2? The remainder is 1 +  1 =  
=  2; it is exactly divisible by 2.

In the same way, it is exactly divisible by 3, 4, 5, 6, 7, 8, 
and by 9. The smallest of such numbers is 9*8*7.5 =  
=  2520, and the sought-for number is equal to 2519. This 
can be tested immediately.



Chapter four 

DIOPHANTINE EQUATIONS

B u yin g  a  S w ea ter
PROBLEM

You have to pay 19 rubles for a sweater. All you have 
on you are three-ruble bills and the cashier only has five- 
ruble bills. How can you pay for the sweater? Or maybe 
you can’t?

The question comes down to this: how many three-ruble 
bills do you have to give to the cashier to pay 19 rubles 
and receive change from the cashier in the form of five- 
ruble bills. There are two unknowns in this problem: the 
number x of three-ruble bills and the number y of five- 
ruble bills. But there is only one equation that can be set up:

3x — 5 y =  19.
Although one equation in two unknowns has an infinity 

of solutions, it is not at all obvious that there is even one 
among them that has integral positive values of x and 
y (recall that these are the numbers of bills). That is why 
algebra has worked out a method for solving such indetermi
nate equations. The credit for introducing them into algebra 
belongs to the first European representative of that science, 
the eminent mathematician of antiquity Diophantus, whence 
the term Diophantine equations.

SOLUTION
We will use the above example to show how such indeter

minate equations are solved.
We have to find the values of x and y in the equation

3x — 5 y =  19
knowing that x and y are positive integers (whole numbers).
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First we isolate the unknown with the smallest coeffi
cient, the term Sx, and get

Sx =  19 +  5 y
whence

_  19 +  5 y  

~  3 6 +  y 4 1+2 y 
3 *

Since x, 6 and y are integers, the equation can only hold 
true if is a whole number as well. Let us denote it 
by t. Then

x =  6 +  y +  t
where

, ;i+ 2  y

and, hence,
St =  1 +  2y, 2y =  St — 1.

From the latter equation we can determine y:

f_{
Since y and t are integers, it follows that —— must like
wise be some whole number tv  Consequently,

and

whence

y =  t +  tx

ti = t— 1 
“ 2~“

2tx — t — 1 and t =  2tx +  1.
Put the value t =  2fx +  1 into the preceding equations: 

y =  t tx =  (2tx +  1) +  =  3^ +  1,
x =  § - \ - y Jr t  =  6 +  (3 tx +  1) +  (2 tx +  1) =  8 +  5 tv
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And so for x and y we have found the expressions * 
x =  8 -|- 5^,
y =  1 -I*

Now we know that the numbers x and y are not only 
integers but are also positive, or greater than 0. Consequently,

8 +  >  0,
1 -f* 3ii 0.

From these inequalities we find

5 ^ > —8 and t { ,

— 1 and * !>  —— .

Such are the restrictions on tx: it is greater than —1/3 
(and, hence, all the more so greater than —8/5). But since 
f, is a whole number, we conclude that it can be only one 
of the following values:

*i =  0, 1, 2, 3, 4, . • • ,
The corresponding values for x and y are:

x =  8 +  5tx =  8, 13, 18, 23, . . .,
y =  1 4* 3*i =  1, 4, 7, 10, . • • •

Now at last we have a way of finding out how the payment 
is to be made:

Either you pay with 8 three-ruble bills and in return 
receive one five-ruble bill,
_________  8 . 3 - 5  =  19,

* Strictly speaking, we have only proved that any integer solution 
of the equation 3a; — 5y =  19 is of the form x =  8» +  5*x, y =  1 +  
+  3$i, where tx is some integer. The converse (that is, that for any in
teger we obtain some integral solution to the given equation) has 
not been proved. However, this is easy to see if we reason backwards, 
so to say, or if we substitute the obtained values of x and y into the 
original equation.
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or you pay 13 three-ruble bills and receive 4 five-ruble 
bills:

13.3 -  4-5 =  19,
and so on.

Theoretically, the problem has an infinity of solutions, 
but in practical situations the number of solutions is limit
ed because neither the buyer nor the cashier has an infinity 
of bills. For instance, if each has 10 bills, the payment can 
be made in only one way: by paying 8 three-ruble bills and 
getting 5 rubles in return. We have thus seen that indeter
minate equations are capable of yielding quite definite 
pairs of solutions in practical problems.

Returning to our problem, we suggest that the reader, 
as an exercise, work out a variant in which the buyer has 
only five-ruble bills and the cashier only three-ruble bills. 
We then get the following series of solutions: 

x =  5, 8, 11, . . . , 
y =  2, 7, 12, . . . .

Indeed,
5-5 -  2.3 =  19,
8 . 5 -  7 -3 = 1 9 ,

11.5 -  12.3 =  19.

We could obtain these results also from the solution to 
the main problem by taking advantage of a simple algebraic 
device. Since giving five-ruble bills and receiving three- 
ruble bills is the same as receiving negative five-ruble 
bills and giving negative three-ruble bills, the new version 
of the problem is solved by means of the same equation that 
we set up for the main problem:

3z — 5 y =  19,
provided, however, that x and y are negative numbers. 
Therefore, from the equations

x — 8 +  5 tx, y =  1 +  3ti\
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we find (knowing that x <  0 and y <  0)
8 -f* 5^ <  0, 1 -f- 3ti <  0

and, hence,

f l < —T*
Assuming ^  =  —2, —3, —4 and so forth, we obtain the 
following values for x and y from the preceding formulas:

The first two solutions, x =  —2, y =  —5 signify that 
the buyer pays minus 2 three-ruble bills and receives minus 
5 five-ruble bills, or, translated into normal language, he 
pays 5 five-ruble bills and receives in return 2 three-ruble 
bills. The same interpretation is applied to the other solu
tions.

PROBLEM
In auditing the books of a shop, the auditor found that 

one of the entries was partially blotted out with ink spots 
and looked like this:

— —2, 3, 4,
x =  - 2 ,  - 7 ,  -1 2 ,
y =  —5, —8, —11.

A u diting  A ccou nts
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The number of metres sold was blotted out, but obviously 
it was not in the form of a fraction; the sum of money re
ceived was also partially blotted with only the last three 
digits distinguishable, and it also was evident that there 
were three preceding figures.

Was it possible for the auditors to recover the original 
figures from those distinguishable in the entry?

SO L U T IO N

Let us denote the number of metres by x. The sum of 
money received for the goods then comes to (in kopecks)

4936x.
Denote by y the number expressed by the three blotted- 

out figures in the entry of the total sum of money. This is 
obviously the number of thousands of kopecks, while the 
whole sum in kopecks looks like this:

lOOOy +  728.
And so we have the equation

4936x =  lOOOy +  728
or, dividing through by 8,

617x -  125 y =  91.
In this equation, x and y are whole numbers and y does 

not exceed 999 since there can only be three figures. Now 
we solve the equation as indicated above:

125y =  6 1 7 * -  91,
y =  5 x - l 3 4 — S x  

125
5x — 1 2 (1 7 — 4x) 

125
: 5x— 1 -f- 21.

617 8Here we" assumed —  =  5 — because" it is best for us 
to have as small a remainder as possible. The fraction

2 (1 7  — A x )  

125
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is a whole number and since 2 cannot be divided by 125,
it follows that ^  must be a whole number, which we
denote by t.

Then from the equation
17 —4a: _  ,

125
we get

17 -  Ax =  1251, 

a;=4 — 311 +  =  4 — 31*+^
where

and, hence,
4tx =  1 — t, 

t =  1 — 4 tv  
x =  125*2 — 27, 
z/ =  617*x — 134*.

We know that
100 <  y <  1000.

Consequently,
100 <  617^ -  134 <  1000

and from this we have

*i and 1, < 1134 
617 *

* N ote  th a t the coefficients of t x are equal to  th e  coefficients of x  

and if in  th e orig inal equation: 617x — 125// = 9 1 ,  and th e sign  is  
reversed w ith  respect to  one of the coefficients of tx. T his is  no acci
dent, in fact it m ay be dem onstrated  th at th a t is ex a c tly  w hat should  
occur every  tim e  if th e coefficients of x  and y  are r e la t iv e ly  prim e  
num bers.
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It is clear that tx can have only one integral value:

*1 =  1
and then

x =  98, y =  483,
which means that 98 metres were sold for a total of 4837 
rubles and 28 kopecks. Thus the entry was restored.

B u yin g  Stam ps
PROBLEM

With one ruble it is required to buy 40 stamps in all: 
one-kopeck, 4-kopeck and 12-kopeck stamps. How many 
will there be of each denomination?

SOLUTION
Here we have two equations in three unknowns: 

x +  4y +  12z =  100, 
x +  y +  z =  40,

where x is the number of one-kopeck stamps, y is the number 
of 4-kopeck stamps, and z the number of 12-kopeck stamps.

Subtracting the second equation from the first, we get 
one equation in two unknowns:

3 y +  llz  =  60*
We find y to be

y =  20 —H . - .

Clearly, is a whole number. Denote it by t. Then we 
have

y =  20 —  11 t9
z 5= 31.
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Substituting the expressions for y and z into the second 
of the original equations, we get

x +  20 — 111 +  3* =  40
and

x =  20 +  81.
Since x >  0, y >  0 and z >  0, it is easy to see that t has 
the following bounds:

0 < i  < _9J
11 •

and from this we conclude that t can have only two integral 
values:

t =  0 and t =  1.
The values of x, y and z are then

t= 0 1

x = 20 28

y= 20 9

z = 0 3

Check
20-1 +  20*4 +  0*12 =  100, 

28*1+9*4+3*12=100.

To summarize, there are only two ways of buying the 
stamps (and if the requirement is to buy at least one stamp 
of each denomination, then there is only one way to do that). 

Here is another problem of the same vintage.

B u yin g  F ru it
PROBLEM

Five rubles is used to buy 100 items of different kinds 
of fruit. Here are the prices:
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one water melon 
one apple . . . 
one plum , . .

50 kopecks, 
10 kopecks, 
1 kopeck.

How many pieces of each type of fruit were bought?
SOLUTION

Denoting the number of water melons by x, the number 
of apples by y and plums by z, we can set up two equations:

f 50x +  -f 1 z — 500,
1 x +  y z =  100.

Subtracting the second equation from the first, we get one 
equation in two unknowns:

49x +  9 y =  400.
The solution continues as

y =  -1° 1 - =  44 — 5x+ = 4 4 —5 x + i t .

f =  z = l —91,
y =  44 -  5(1 -  91) +  i t  =  39 +  491. 

From the inequalities
1 — 9t >  0 and 39 +  491 >  0

we find that
39
49

and, hence, t =  0. Therefore,
x =  1, y =  39.

Substituting these values of x and y into the second 
equation, we get z =  60.
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And thus the total purchase amounted to one water 
melon, 39 apples and 60 plums.

No other combinations are possible.

G u e ss in g  a  B irthday
1— — — ~ ———-  ■

PROBLEM

The ability to solve indeterminate equations makes it 
possible to perform the following mathematical trick.

Ask a friend to multiply the number of the date of his 
birthday by 12, and the number of the month by 31. He 
reports the sum of both products and you work out the date 
of his birth.

Suppose your friend was born on February the 9th; then 
he carries out the following computations:

9*12 =  108, 2-31 =  62,
108 +  62 =  170.

This last number, 170, is what he tells you, and then 
you work out the date. How?

SOLUTION

The problem reduces to solving the indeterminate equation
12* +  31 y =  170

in positive integers; the day of the month * does not exceed 
31, and the number of the month y does not exceed 12.

x= 170 — 31 y 
12 14— 3 y + * ± g ! L = i 4 - 3 y + t ,  

2-f5z/ =  12f,

2t — 2 t u
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1 — t =  5*i, t =  1 — 5*x, 
y — 2(1 — 5*x) — 2tx =  2 — 12£x, 

x =  14 -  3(2 -  12^) +  1 -  5*x =  9 +  31*!.
Knowing that 31 >  x >  0 and 12 >  y >  0, we find the 

bounds of tx:

Consequently,
tx =  0, x =  9, y =  2.

The birthday falls on the 9th day of the second month, 
which is February 9.

Another solution that dispenses with equations can also 
be tried. We are told the number a =  12# +  31y. Since 
12# +  24y is divisible by 12, the numbers ly  and a have 
the same remainders when divided by 12. Multiplying by 
7, we find that 49y and la have the same remainders upon 
division by 12. But 49y =  48y +  V and 48y is divisible 
by 12. This means y and la have the same remainders upon 
division by 12. In other words, if a is not divisible by 12, 
then y is equal to the remainder upon division of the number 
la  by 12; but if a is divisible by 12, then y =  12. This 
gives the number of the month y quite definitely. But if 
we know y then it is easy enough to find x.

A tiny piece of advice: before finding the remainder 
obtained from the division of la  by 12, replace the number 
a by its remainder obtained from division by 12. That’s 
much simpler. For example, if a =  170, then do the fol
lowing mental arithmetic:

170 =  12*14 +  2 (and so the remainder is 2)t 
2*7 =  14; 14 =  12*1 +  2 (hence y =  2),

x _  m - m ,  =  m - 3 , - 2  =  m = g  (and so

You can name the birthday of your friend: it is February 9.
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Now let us prove that this trick never fails, in other 
words, the equation always has only one solution in positive 
integers. Denote the number given to you by your friend 
by a so that finding the birthday reduces to solving the 
equation

12x +  31y =  a.

We assume the contrary. Suppose that the equation has 
two distinct solutions in positive integers, namely the 
solution xly yx and the solution x2, y2 (xx and x2 do not exceed 
31, and yx and y2 do not exceed 12). We then have

I2xx +  31 yx =  a,
12x2 +  31y2 =  a.

Subtracting the second equation from the first, we get
12(^x — x2) +  31(yx — y2) =  0.

From this equation it follows that the number i2(xx — 
— x2) is divisible by 31. Since xx and x2 are positive numbers 
that do not exceed 31, their difference xx — x2 is less than 
31. Therefore the number 12(0  ̂ — x2) will be' divisible 
by 31 only when xx =  x2, that is, when the first solution 
coincides with the second. Thus, the assumption that there 
are two distinct solutions results in a contradiction.

S e llin g  C h ickens
AN OLD PROBLEM

Three sisters came to the market with chickens to sell. 
One brought 10, another 16 and the third 26. They sold a 
portion of their chickens by noon at the same price. In the 
afternoon, afraid that not all the chickens would be sold, 
they reduced the price and disposed of the remaining stock
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all at the same price. At the end of the day, each sister had 
obtained the same amount of money from the sale: 35 rubles.

What was the price in the forenoon and in the afternoon?
SOLUTION

Denote the number of chickens sold by each sister in the 
forenoon by y, z. In the afternoon, they sold 10 — x, 
16 — y, 26 — z chickens. The earlier price we denote by 

the afternoon price by n. For the sake of clarity, here 
is a table of the designations:

N u m b e r  o f  c h ic k e n s  s o l d P r ic e

Forenoon X y Z m
Afternoon 10 — x 16- y 26- z n

The first sister obtained
mx +  72(10 — x); hence mx +  72(10 — x) =■= 35.

The second sister obtained
my +  72(16 — y); hence my +  72(16 — y) =  35.

The third sister obtained
mz +  72(26 — z); hence mz +  72(26 — z) =  35.

A few manipulations yield

{(m — n)x +  1072 =  35,
(m — n)y +  I 672 =  35,

(m — n)z +  2672 — 35.
Subtracting the first equation from the third and then 

the second from the third, we get, in succession,
' [m — n) (z — x) +  I672 =  0,

{ (m — 72) (z — y) +  IO72 =  0,
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or
f (m — n) (x — z) =  16n,
\  (m — n) (y — z) =  10n.

Now divide the first of these equations by the second:
x — z 8 x — z y — z
------=  TT or q =  - r - •y — z 5 8 5

Since x, y, 2 are whole numbers, the differences x — z and 
y — z are also whole numbers* Therefore, for the equation

x— z __ y — z

to be possible, it is necessary that x — z be divisible by 8* 
and y — z by 5. Consequently,

x — z _   ̂_  y — z 
8 5

whence
x =  z +  8J, 
y =  z +  5*.

Note that the number t is not only a whole number but is 
also positive, since x >  z (otherwise the first sister would 
not have been able to net the same sum as the third). 

Since x <  10, it follows that’
z +  St <  10.

Given z and i as positive whole numbers, the last inequality 
is satisfied in only one case: when z =  1 and t =  1. Sub
stituting these values into the equations

x =  z +  8t and y =  z +  5t, 

we get x =  9 and y =  6.
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Now, going back to the equations
mx +  n( 10 — x) =  35, 
my +  7z(16 — y) =  35, 
mz +  n( 26 — z) =  35

and substituting into them the values of x, y and z thus 
found, we obtain the prices at which the chickens were sold:

3 1n1 =  3 -7- rubles, n =  1 -y- rubles,4 4
Thus, in the forenoon the chickens sold for 3 rubles and 

75 kopecks, and in the afternoon for 1 ruble and 25 kopecks.

T w o N um bers and F our O p eration s
PROBLEM

In solving the preceding problem, which led to three 
equations in five unknowns, we did not follow a general 
pattern but rather made use of free mathematical reasoning. 
We will do the same with respect to the following problems 
which lead to indeterminate equations of the second degree. 

Here’s the first.
The following four operations were performed on two 

positive integers:
(1) they were added,
(2) the lesser was subtracted from the greater,
(3) they were multiplied together,
(4) and the larger number was divided by the smaller one. 
The results thus obtained were then combined to form

a sum of 243. Find the numbers.
SOLUTION

If the greater number is x and the smaller one y, then 
(x +  y) +  (x—y)-\-xy +  j  =  243.
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tf  th is equation is now m u ltip lied  by y, the brackets
rem oved, and lik e  terms co llected , we get

For x to be a whole number, the denominator (y +  l )2 
must be one of the divisors of the number 243 (because y 
cannot have the same factors as y +  1). Knowing that 
243 =  35, we conclude that 243 is divisible only by the 
following numbers, which are perfect squares: 1, 32, 92. 
This means (y +  l )2 must be equal to 1, 32 or 92, whence, 
recalling that y must be positivet we find that y is equal 
to 8 or 2 .

Then x is equal to

And so the desired numbers are 24 and 8 or 54 and 2.

W hat K ind of R ecta n g le?

PROBLEM

The sides of a rectangle are whole numbers. What must 
their lengths be for the perimeter of the rectangle to be 
numerically equal to its area?

SOLUTION
Denoting the sides of the rectangle by x and z/t we set 

up the equation

x (2y +  y2 +  1) =  243y. 
But 2y +  y1 +  1 =  (y +  l)2 and so

243y

(U +  1)2 '

243 2 
9

2x +  2 y =  xy
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whence

x 2 y
y— 2 •

Since x and y must be positive, so also must the number 
y — 2 , or y must be greater than 2 .

Now notice that
2V _  2 (< /-2 )+ 4  _ 0 , 4

y — 2 y— 2  ̂ ' y — 2

Since .r must be a whole number, the expression ——rZ/ ^
must be a whole number too. But when y >  2 , this is only 
possible if z/ is equal to 3, 4 or 6 . The corresponding values 
of x are then 6 , 4, 3.

To summarize: the sought-for figure is either a rectangle 
with sides 3 and 6 or a square with side 4.

T w o T w o-D ig it N um bers

PROBLEM

The numbers 46 and 96 are rather peculiar: their product 
does not change if the digits are interchanged.

Look,
46-96 =  4416 =  64-69.

It is required to find out whether there are any other 
pairs of two-digit numbers having the same property. Is 
there any way to find them all?

SOLUTION
Denoting the digits of the desired numbers by x and yt 

z and /, we set up the equation
(10* +  y) (10z +  t) -  (1 0y +  x) (1 0* +  z).
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R em oving brackets and sim p lify in g , we get

xz =  yt.
where x, y, z, t are integers less than 10. To find the solu
tions we set up pairs of equal products made up of 9 digits:

1-4 =  2-2 2-8 =  4-4
1-6 =  2-3 2 9 =  3-6
1-8 =  2-4 3-8 =  4-6
1- 9 =  3-3 4-9 =  6 - 6

2- 6 =  3-4
There are nine equalities. From each one it is possible 

to set up one or two desired groups of numbers. For example, 
using the equality 1-4 =  2-2 we find one solution:

12-42 =  21-24.
Using 1-6 =  2-3 we get two solutions:

12.63 =  21-36. 13.62 =  31-26.

In this manner wo obtain 
12-42 =  21-24 
12-63 =  21-36
12- 84 =  21-48
13- 62 =  31-26
13- 93 =  31-39
14- 82 =  41-28 
23-64 =  32-46

the following 14 solutions:
23- 96 =  32-69
24- 63 =  42-36 
24-84 =  42.48 
26-93 =  62-39 
34-86 =  4 3 - 6 8  

36-84 =  63-48 
46-96 =  64-69
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P y th a g o rea n  N um bers

A convenient and very exact method used by surveyors to 
lay down perpendicular lines consists in the following. 
Suppose it is required to draw a perpendicular to the straight 
line MN through point A (Fig. 13). To do this, from A lay

off a distance a three times on AM. Then make three knots 
in a rope with distances between knots equal to 4a and. 5a. 
Take the; extreme knots and place them on A and B\ then 
take the middle knot and stretch the rope. The result will 
be a triangle with a right angle at A.

This ancient procedure, which most likely was used thou
sands of years ago by the builders of the Egyptian pyramids, 
is based on the fact that every triangle whose sides are in 
the ratio 3 : 4 : 5 is, by the familiar theorem of Pythagoras, 
a right-angle triangle because

32 +  42 =  52.
Besides the numbers 3, 4, 5, there are an infinity of 

positive integers a, 6 , c satisfying the relation
a2 +  b2 =  c2.

135



They are called Pythagorean numbers. According to the 
Pythagorean theorem, such numbers may serve as the sides of 
a right triangle, and so a and b are termed the legs and c 
is the hypotenuse.

Clearly, if a, b, c is a Pythagorean triad (a triplet of 
Pythagorean numbers), then pa, pb, pc, where p is an integral 
factor, are Pythagorean numbers too. Conversely, if any 
Pythagorean numbers have a common multiple, then that 
multiple can be used to divide through all the numbers and 
again obtain a Pythagorean triad. Therefore, to begin with 
let us investigate only triplets of relatively prime Pythago
rean numbers (the others can be obtained from them by mul
tiplication by an integral factor p).

We will now show that in each of these triplets a, b% c 
one of the legs must be even and the other odd. We assume 
the contrary. If both legs a and b are even, then the number 
a2 +  b2 will be even and hence so also will the hypotenuse. 
However, this contradicts the fact that the numbers a, 6 , c 
do not have any factors in common since three even numbers 
have the common factor 2. Thus at least one of the legs, 
a or ft, must be odd.

There is still another possibility: both legs are odd and 
the hypotenuse is even. It is easy to show that this cannot 
be. Indeed, if the legs are of the form

2x +  1 and 2y +  1 ,

then the sum of their squares is equal to

4x* +  Ax +  1 +  Ay1 +  Ay +  1 =  4 (x2 +  x +  y2 +  y) +  2,

which is a number that, divided by 4, yields 2 as a remainder. 
Yet the square of any even number should be exactly divis
ible by 4. This means the sum of the squares of two odd num
bers cannot be the square of an even number; in other words, 
our three numbers are not Pythagorean numbers.
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Thus, of the legs a and b, one is even and the other is 
odd. Therefore, the number a2 +  b2 is odd and, hence, the 
hypotenuse c is odd.

Suppose, for the sake of definiteness, that leg a is odd 
and leg b is even. From the equation

we immediately get
a2 =  c2 — b2 =  (c +  b) (c — b).

The factors c +  b and c — b in the right-hand member of the 
equation are relatively prime. True enough, because if those 
numbers had a prime factor in common different from unity, 
then that factor would divide the sum

and the product
(c +  b) (c — b) =  a2,

which means the numbers 2 c, 2b and a would have a com
mon factor. Since a is odd; the factor is different from 2 , and 
for this reason this same factor is common to the numbers a, 
6 , c, which however cannot be. The contradiction thus ob
tained shows that the numbers c +  b and c — b are relatively 
prime.

But if the product of relatively prime numbers is a perfect 
square, then each of them is a square, or

a2 +  b2 =  c2

(c +  b) +  (c — b) =  2 c

and the difference
(c +  b) -  (c -  b) =  2b

{
c +  b =  HI*, 
c — b =  n2.
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Solving this system, we get 
m2 +  n2c =  — 5-— , b m2 — n2

2
a2 =  (c +  b) (c — b) =  m2n2, a =  mn.

And so the Pythagorean numbers under consideration here are 
of the form

a — ran, m2-\-n2 c = --- ----

where m and n are certain relatively prime odd numbers. The 
reader can readily convince himself of the converse: for any 
odd m and n the formulas above yield three Pythagorean 
numbers a, 6 , c.

Here are several Pythagorean triads obtained for different 
m and n:

for m — 3, n =  1 32 +  42 =  52
for m — 5, 77 =  1 52 +  122 =  132
for m =  7 77 =  1 72 +  242 =  252
for 77i =  9, n =  1 92 +  402 =  412
for m =  1 1 , 77 =  1 lia +  602 =  612
for 77i =  13, 77 =  1 132 4 - 842 =  852
for 77i — 5, 77 =  3 152 4 - 8 2 =  172
for 77i =  7, 77 =  3 212 +  202 =  292
for 771 =  11, 77 =  3 332 +  562 =  652
for 77i — 13, 77 =  3 392 +  802 =  892
for m =  7, 77 =  5 352 4 - 122 =  372

for 777 — 9, 77 =  5 452 +  282 =  532
for 777 =  11 , 77 =  5 552 4 . 48* =  7 3 2

for 777 =  13, 77 =  5 652 +  72s =  972

for 777 =  9, 77 — 7 632 +  162 =  652
for 777 =  11 , 77 =  7 772 +  362 =  852
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All other Pythagorean triads either have common factors or 
contain numbers exceeding a hundred.

Pythagorean numbers have a number of curious properties 
that we list below without proof:

(1) One of the legs must be a multiple of three.
(2) One of the legs must be a multiple of four.
(3) One of the Pythagorean numbers must be a multiple 

of five.
A glance at the Pythagorean numbers given above will 

convince the reader that these properties do hold true.

An In d eterm in ate  E q u ation  
of the T hird D eg ree

The sum of the cubes of three integers may be a cube 
of a fourth number. For instance, 33 +  43 +  53 =  63.

Incidentally, this means that a cube whose edge is equal 
to 6 cm is equal in size to the sum of three cubes whose

Fig. 14

edges are 3 cm, 4 cm and 5 cm (Fig. 14). It is said that this 
relation highly intrigued Plato.

Let us try to find other relations of the same kind; we 
pose the problem of finding solutions to the equation

x3 +  y3 +  z3 =  u3.
It is more convenient to denote the unknown u by — t. Then 
the equation takes the simple form

x3 +  y3 +  z3 +  — o*



We will now consider a procedure that will make it pos
sible to find any number (an infinity) of solutions to this 
equation in integers (positive and negative). Let a, b, c, d 
and a, p, y, 6 be quadruples of numbers satisfying this 
equation. To the numbers of the first quadruple add those 
of the second quadruple multiplied by some number ft, 
and let us also try to choose k so that the resulting numbers

a -f- ftct, b -f“ ftp, c -f“ fty, d -f- ftd
also satisfy our equation. In other words, we choose ft so 
that the following equality holds true:

(a +  kaf  +  (b +  ftp)3 +  (c +  fty)3 +  (d +  ft63) =  0.
Opening parentheses and recalling that the quadruples 
a, b, c, d and a, p, y, 6 satisfy our equation, that is, 
that we have

a3 +  b3 +  <? +  d? =  0, a3 +  P3 +  y3 +  63 =  0,
we get
3a2fta -f- 3aft2a2 +  362ftp -f- 36ft2p2 -j- 3c2fty +  3cft2y2

+ 3 d?k8 +  3dkW -  0
or
3ft [(a2a +  b2p +  c2y +  d26) -f- ft(aa2 +  b$2 +  cy2 +  rf62)]

=  0.
A product vanishes only if at least one of its factors is 
zero. Equating each of the factors to zero, we obtain two 
values for ft. The first value, ft — 0, does not interest us: 
it means that if nothing is added to the numbers a, 6, c, d, 
then the resulting numbers satisfy our equation. So we take 
only the second value for ft:

7 a2a+fo2p +  c2y +  d2S
aa2 +  fcp2+ cy2 +  dS2 *
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If we know two quadruples of numbers that satisfy the orig
inal equation, we can find the new quadruple: to do this, add 
to the numbers of the first quadruple the numbers of the 
second quadruple multiplied by /c, where k has the value 
given above.

To make use of this procedure, it is necessary to know 
two quadruples of numbers satisfying the original equation. 
We already know one: (3, 4, 5, —6). Where can we find 
another one? This is very simple. For the second quadruple, 
take the numbers r, —r, s, —s, which obviously satisfy 
the original equation. In other words, set

a =  3, b =  4, c =  5, d =  —6,
a =  r, P =  —r, y =  s 6 =  —s.

Then, as is easy to see, for k we obtain the following value:
7 —  7 r — i i s _ 7 r + i i s

K —  7r2 — s2 “  7r2— s 2 1

and the numbers a +  ka, b +  ftp, c +  ky, d +  kb will be 
respectively equal to
28r2 -|- l l r s  — 3s2 21r2 — lir a  — 4s2

7r2 — s2 > 7r2 — s2 ’

35r2 -|-7rs + 6 s 2 — 42r2 — 7 r s  — 5s2
7r2 — s2 ’ 7r2 — s2 *

By what has already been stated above, these four expres
sions satisfy the original equation

£3 +  S/3 +  z3 +  — 0.

Since all these expressions have the same denominator, it 
can be dropped (which means the numerators of these 
fractions also satisfy the equation at hand). To summarize, 
the equation is satisfied (for any r and s) by the following
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numbers:
x =  28 r2 +  11 rs -  3ss ,
1/ =  21r2 — llrs  — 4s2,
z — 35r2 +  Irs +  6s2,
t =  —42 r2 — 7rs — 5s2.

One can convince himself directly that this is so by cubing 
the expressions and adding them. Then, assigning various 
integral values to r and s, we can obtain a whole series of 
integral solutions to our equation. If in the process the 
numbers have a common factor, it can be divided out. For 
example, for r =  1, s — 1, we get for x, y , z, t the values 
36, 6, 48, —54, or, after dividing through by 6, we have 
6, 1, 8, —9. Thus

63 +  l 3 +  83 =  93.
Here are a number of equalities of this type (obtained 

after dividing through by a common factor):
for r =  1, s =  2 383 + 733 =  173 +  763
for r =  1, s =  3 173 + 553 =  243 +  543
for r =  1, s =  5 43 +  HO3 =  673 +  1013
for r =  1, s =  4 83 + 533 =  293 +  503
for r =  1, s =  - 1 73 + 143 +  173 =  203
for r — 1, s =  - 2 23 + 163 =  93 +  153
for r =  2, s -  - 1 293 + 343 +  443 =  533

Note that if in the original quadruple 3, 4, 5, —6 or 
in one of the newly obtained quadruples the numbers are 
transposed and the same procedure is applied, we obtain 
a new set of solutions. For example, taking the quadruple 
3, 5, 4, —6 (that is, by putting a =  3, b =  5, c =  4,
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d =  —6), we get the following values for x , y, z, t :
# *= 20r2 +  lOrs — 3s2,
y =  12 r2 — lOrs — 5s2,
z =  16r2 +  8 rs +  6s2,
t =  —24 r2 — 8rs — 4s2.

From this, taking various values of r and s, we obtain the 
following set of new relations:

for r =  1, s =  1 93 + 103 = l 3 + 123
for r =  1, s =  3 233 + 94s = 633 + 843
for r =  1, s =  5 53 +  1633 +  1643 = 2063
for r =  1, s =  6 73 + 543 + 57* = 703
for r =  2, s =  1 233 + 973 + 863 = 1163
for r =  1, s =  - 3 33 + 363 + 373 = 463

and so forth.
In this way we can obtain an infinity of solutions of the 

equation under consideration.

One H undred T housan d  
for th e  P ro o f of a  T heorem

One of the problems in the field of indeterminate equations 
became famous through the huge sum of 100 000 German 
marks that was offered (in a will) for its solution.

The problem is to prove the following proposition that 
goes by the name of “Fermat’s last (or great) theorem”.

The sum of identical powers of two integers cannot be the 
same power of some third integer. The only exception is the 
second power for which it is possible.
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In other words, it is required to prove that the equation 
a:n -f f  *  zn

cannot be solved in whole numbers for n >  2.
We have seen that the equations

& +  y2 -  
xs +  y* +  zz =** t3

have any number of integral solutions. But try to find three 
positive integers for which the equation x* +  y3 =  z3 holds 
true and all your efforts will be in vain.

It is likewise impossible to find examples for the fourth, 
fifth, sixth and higher powers. That is the essence of Fer
mat’s great theorem.

Now what is required of seekers of the prize? They have to 
prove this proposition for all those powers for which it is 
true. The point is that Fermat’s theorem has not yet been 
proved.

Three centuries have passed since it was first proposed 
and mathematicians have so far failed to prove it.

The greatest mathematicians have worked on the prob
lem but at best have only proved the theorem for individ
ual exponents or groups of exponents, whereas what is 
required is a general proof for any integral exponent.

Particularly remarkable is the fact that the proof of the 
theorem was apparently known at one time, and then was 
lost. Fermat*, the one who proposed the theorem, was an 
eminent mathematician of the 17th century. He claimed 
that he knew of a proof. Fermat wrote down his “great”

* Fermat (1603-1665) was not a professional mathematician. He 
was educated as a lawyer and was a councillor of the parliament and 
his mathematical investigations were done in between. This did not 
prevent him from making a number of outstanding discoveries, which, 
incidentally, he did not publish but, as was the custom in those days, 
described in his letters to scientists and friends: Pascal, Descartes, 
Huygens, Roberval, and others.
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theorem in the margin of a book by Diophantus (as he did 
a number of other theorems in the field of number theory) 
and added these words: “I have discovered a truly marvel
ous demonstration, which this margin is too narrow to 
contain.”

Nowhere has this proof been found, either in the papers 
of the great mathematician or in his correspondence or 
anywhere else.

Fermat’s successors were forced to work out the matter in 
their own way.

Here are the results of these efforts: Euler (1797) proved 
Fermat’s theorem for the third and fourth powers; the fifth 
power was provedj by Legendre (1823), the seventh* by 
Lame and Lebesgue (1840). In 1849 Kummer proved the 
theorem for a broad range of powers and, incidentally, for 
all exponents less than one hundred. These latter investiga
tions go far beyond the limits of the realm of mathematics 
known to Fermat and it is quite a mystery how Fermat 
could have discovered a general proof of his great theorem. 
True, he could have been mistaken.

For those interested in the history and the present state 
of Fermat’s problem we suggest A. Ya. Khinchin’s Fermat's 
Great Theorem (in Russian), a nice booklet that can be read 
by anyone with an elementary knowledge of mathematics.

* No special proof is required for composite exponents (except 4): 
such cases reduce to those of prime exponents.

0 - 0 8 9 1



Chapter five

THE SIXTH MATHEMATICAL 
OPERATION

T he S ix th  O peration

Addition and multiplication each have an inverse opera
tion called subtraction and division respectively. The fifth 
mathematical operation—raising to a power—has two in
verses: finding the base and finding the exponent. Finding the 
base is the sixth mathematical operation and is called 
extraction of roots. Finding the exponent (this is the seventh 
operation) is termed taking logarithms. The reason why 
raising to a power has two inverses, whereas addition and 
multiplication have only one each is easy to see: both 
terms in addition (first and second) are of an equal status 
and can be interchanged. The same goes for multiplication. 
Now the numbers that take part in raising to a power are 
not of the same status and, generally, cannot be interchanged 
(for example 35 ^  53). For this reason, finding each of the 
numbers participating in addition and multiplication is 
handled by the same procedures, whereas finding the base 
of a power and finding the exponent are handled in different 
ways.

The sixth operation (root extraction) is denoted by the 
symbol \  . It is not so commonly known that this is a modi
fication of the Latin letter r, the initial letter in the word 
radix, meaning root. There was a time (in the 16th century) 
when the root symbol was designated by a capital R along
side which stood the first letter of the Latin words quadra- 
tus (g) and cubus (c) to indicate which particular root was
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being sought.* For example, one wrote
R.q. 4352

to mean
1/43527

Add to this the fact that at that time there were no signs 
to indicate plus and minus (the letters p. and m. were used 
instead) and also the fact that our brackets (parentheses) 
were indicated by the symbols |__ j  and it will be clear 
that those notations were a far cry from customary algebraic 
symbols in use today.

Here is an example taken from a book by the mathemati
cian Bombelli (1572):

jR.c. 4352 p. 16jm.R.c.\_R.q. 4352 m. 16 j.
Using modern symbols, it would look like this:

3 _______________________________  3 ___________________________

]/" ]/4352+  16 — ]/^ y  4352 — 16.

Besides the notation a we can also make use of a n , which 
is particularly convenient in the sense of generalization, 
for it demonstrates very pictorially that every root is nothing 
other than a power whose exponent is a fraction. It was 
proposed by the well-known Flemish engineer and mathe
matician of the 16th century Simon Stevin.

W hich Is G reater?
PROBLEM 1

Which is greater 5 or ] /  2?
This and the problems that follow are to be solved without 

bothering to compute the values of the roots.
* Magnitsky’s textbook of mathematics, which was widely used 

in the first half of the 18th century in Russia, does not have a special 
symbol for root extraction.
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SOLUTION
Raising both expressions to the 10th power, we get

(j// 5)10 =  52 =  25, ( ] /2 )10 =  25 =  32 
And since 32 >  25, it follows that

1/2 > / 5

PROBLEM 2 

Which is greater Y  k or ,+  7?

SOLUTION
Raising both expressions to the 28th power, we get 

{ Y l ) zs =  47 =  214 =  27 • 27 =  1282,

( Y ^ ) ZR =  74 =  72 • 72 =  492.
Since 128 >  49, it follows that

/ 4 > / 7 .
PROBLEM 3

Find the greater expression of V 7 +  V 10 and 1 /3 + 1 /1 9 .

SOLUTION 
Squaring both expressions, we get

(+ T  +  YTof  =  17 +  2 + 7 0 ,
(1/3 +  1/19)2 =  22 +  2 1/57.

Reduce both expressions by 17 and we have 
2 1/70 and 5 +  21/57.

Square these expressions. This yields
280 and 253 +  20 ]/57.
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Subtract 253 from each and then compare them:

27 and 2 0 /5 7 .
Since ] /  57 is greater than 2, it follows that 20 ]/ 57 >  40; 
hence

y 3 + i/l9 >  y 7 + i/io.

S o lv e  It a t a  G lan ce
PROBLEM 

Take a close look at the equation
.t*3 =  3

and find x immediately.

SOLUTION

Anyone familiar with algebraic symbols will figure out that

x = y 3 .
It must be that because

x3 =  ( y 3 ) 3 =  3
and consequently

xx3 =  x3 =  31
which is what we sought.

For those who cannot do the problem “at a glance”, try 
this device.

Let
r* =  y .

Then
x =  y  y.
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and the equation becomes

i ^ y ) v =  3
or, cubing,

yv =  33.
It is clear that y =  3 and, hence,

x = y  y = j y rs.

A lg eb ra ic  C om edies
PROBLEM 1

The sixth mathematical operation makes it possible to 
devise actual algebraic comedies and farces on such topics 
as 2-2 =  5, 2 =  3 and the like. The humour in these mathe
matical shows lies in the fact that the error—a rather ele
mentary one—is somewhat camouflaged and is not at once 
apparent. Let us take two plays from this comic repertoire 
from the field of algebra.

To start with,
2 =  3.

We begin with the unquestional equality 
4 _  10 =  9 -  15.

Then to both sides of the equality we add the same quan- 
tity, 6^-:

4 —10 +  6 -  =  9 —15 +  6-|-.

The comedy goes on with the following manipulations:

2s- 2 - 2 - T + ( 4 f  =  32- 2-34 + ( 4 ) ! -

(2-4 )2=(3-4 )!-
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Taking the square root of both members of the equation, we 
get

Finally, adding — to both sides, we arrive at our comical 
result:

2 =  3.
Where is the mistake?

SOLUTION

An error slipped in when we concluded that from

(2-4 f= (3-4 )2
follows

From the fact that the squares are equal it does not at all 
follow that the first powers are equal. Say, (—5)2 =  52, 
but —5 does not equal 5. Squares may be equal even when 
the first powers have different signs. That precisely is the 
case in our problem:

(-4 )2=(4 )*•
1 1 But — 2" Is n°f the same as y  .

PROBLEM 2 
Here’s another algebraic farce (Fig. 15):

2-2 =  5.
It follows the path of the preceding problem and is based on 
the same trick We start out with the undoubtedly flawless
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Fig. 15

equality
16 — 36 =  25 — 45.

Equal numbers are added to each side:

1 6 -3 6  + 2 0 - =  2 5 - 4 5 +  20^- 

and then the following manipulations are carried out:

(4 +r=( 5 -ir-
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Again using the false conclusion of the earlier problem, 
we finally get

4 =  5,
2.2 =  5 .

These amusing instances should be a warning to the 
inexperienced mathematician in performing imprudent oper
ations with equations involving the radical sign.



Chapter six

SECOND-DEGREE EQUATIONS

S h ak in g  H ands
PROBLEM

A meeting gathered and someone counted the total number 
of handshakes to be 66. How many people were there at the 
meeting?

SOLUTION

Algebraically, the problem is solved with great ease. 
Each of x people shook the hand of x — 1 persons, which puts 
the total number of handshakes at x {x — 1). But also bear 
in mind that when Ivanov shakes the hand of Petrov, 
Petrov also shakes Ivanov’s hand. We count these two 
handshakes as one. That makes the number of handshakes 
half of x (x — 1):

x (x — 1) 
2 66,

or, after some simplifying manipulations, 
x2 — x — 132 =  0,

whence
_  1 ±  V i  +  528 

2

x1 =  12, x2 =  —11.

Since the negative solution (—11 persons) is meaningless 
here, we discard it and retain only the first root. Twelve 
persons were at the meeting.



S w arm s of B e es
PROBLEM

In ancient India there was a curious kind of sporting 
contest, a sort of a public competition in the solution of 
difficult problems. Hindu mathematics manuals served in 
part as an aid to competitors of such contests in mental 
sport. One author of such a manual wrote: “The rules given 
here can be used by a wise man to think up thousands of 
other problems. Just as the sun in its brightness eclipses 
the stars, so a wise man can eclipse the glory of another 
in congregations of people by submitting and solving alge
braic problems.” The original is more poetic since the whole 
book is made up of verses, and the problems too are in verse 
form. Here is one translated into prose.

A group of bees equal in number to the square root of half 
the whole swarm alighted on a jasmine bush, leaving behind 
8/9 of the swarm. And only one little bee circled about a lotus 
for it was attracted by the buzzing of a sister bee that was 
so careless as to fall into the trap of the fragrant flower. 
How many bees were there in the swarm?

SOLUTION
If we denote the desired number of bees in the swarm 

by x, the equation takes the form

This can be simplified by introducing an auxiliary unknown:
) ^ t + t x + 2 = x -

Then x =  2y2 and we obtain

y +  ^ f -  +  2 =  2y* or 2 y * -9 y -1 8  =  0.
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Solving this equation, we get two values for y:
a 3J/i =  6, y2= —j .3

V * = — 2-
The corresponding values for # are 

^  — 72, ^2 — 4.5.
Since the number of bees can only be whole and positive, 
only the first root satisfies the problem: the swarm consisted 
of 72 bees. Let us check this:

PROBLEM
Here is another Hindu problem that appeals as a poem 

in a marvellous little book called Who Invented Algebra? 
by V. I. Lebedev. Rendered into English, it goes like this:
Two little bands of monkeys at play.
An eighth of them squared were jabbering wildly in a thicket 
When twelve shouted loudly with glee!
Tell me: How many were there altogether in the thicket?

SOLUTION
If the total number of monkeys in the troop is x, then

The problem has two positive solutions: there could be 
either 48 monkeys altogether or 16. Both answers fully 
satisfy the problem.

y  -y- +  !~72 +  2 =  6 +  64 +  2 =  72.

A T roop  of M onkeys

and from this
xx =  48, x2 =  16.
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F a rs ig h ted  E q u ation s

In the problems we have so far considered, the two roots 
of each equation were made use of in different ways depend
ing on the conditions of the problem. In the first case 
we dropped the negative root because it contradicted the 
sense of the problem, in the second case we discarded the 
fractional and negative root, and in the third problem, 
on the contrary, we made use of both roots. The existence 
of a second solution is often quite a surprise not only for 
the one working the problem but also for the one who thought 
it up. What follows is a problem in which the equation 
turned out to be more farsighted than the one who posed it.

A ball is thrown upwards at a speed of 25 metres a second. 
In how many seconds will it reach 20 metres above the 
ground?

SOLUTION
For bodies thrown upwards in the absence of air resistance, 

mechanics has established the following relationship between 
the height (h) it reaches above the ground, the initial veloc
ity (z;), the acceleration of gravity (g) and the time (t):

We disregard air resistance in this case because it is 
very slight in the case of small speeds. To further simplify 
calculations, we take g equal to 10 metres (instead of 9.8 me
tres, which is an error of only 2%). Substituting into our 
formula the values of h, v and g, we get the equation

20=  25t 1012 
2

+  4 =  0.
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Solving this equation, we obtain
tx =  1 and t2 =  4.

The ball will be at a height of 20 metres twice: after 
a lapse of 1 second and after 4 seconds.

This appears to be improbable and so without giving 
much thought to the matter we discard the second solution. 
But that is a mistake! The second solution is quite meaning
ful, for the ball did indeed reach a height of 20 metres twice. 
First when it went up, and a second time on the way down. 
It can easily be figured out that with an initial velocity 
of 25 metres a second the ball will spend 2.5 seconds on 
its upward leg reaching a height of 31.25 metres. After 1 
second it will reach 20 metres, but will^go on upwards 
another 1.5 seconds. Then it will take the same amount of 
time to drop back to the 20-metres level and, a second 
later, will reach the ground.

E iiler ’s  P rob lem

Stendhal, in his autobiography, relates the following 
about his days of schooling:

uThe mathematics teacher had a book by Euler and there I 
found his problem on the number of eggs that a peasant 
woman was carrying to market ... . This was a revelation 
to me. I realized what it meant to use the tool called algebra. 
But, the devil take it, nobody had ever told me about this 
thing ...

Here is the problem from Euler’s Introduction to Algebra 
that so strongly impressed the young Stendhal.

Two peasant women together took 100 eggs to market, one 
had more than the other. Both sold them for the same sum 
of money. The first then said to the second: “If I had had 
your eggs, I would have earned 15 kreuzers,” to which the
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second replied: If I had had your eggs, I would have earned 
2

6 y  kreuzers.” How many eggs did each have to begin with?

SOLUTION
Suppose the first peasant had x eggs and the second 100 — x. 

If the first had had 100 — x eggs, she would have earned 15 
kreuzers. This means the first woman sold her eggs at

15
100—x

apiece.
In the same way we find that the second peasant soldjier 

eggs at

apiece.
We can now determine the actual earnings of each peasant 

woman:
first: x- 15 

100 — x
15x

100 — x *

second: (1 0 0 -g) - g  =  -̂ (1g = -a;2>x

Since they both earned the same amount, it follows that
15* _  20 (100—x)

100 — x ~~ 3*

Simplifying we get
+  160* -  8000 =  0

and from this,
xx — 40, x2 =  —200.

Here the negative root is meaningless, and the problem 
has only one solution: the first peasant woman brought 
40 eggs to market and the second, consequently, 60.
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This problem can be solved faster, but it requires a good 
deal of insight and is harder to hit upon.

Suppose the second peasant had k times the number of eggs 
of the first. Since they earned the same money, the first 
peasant sold her eggs at a price k times that of the second. 
If they had exchanged their goods before selling them, the 
first peasant would have k times as many eggs as the second 
and would have sold them at k times the price. Which means 
she would have earned k2 more money than the second 
peasant. And so we have:

whence

Jc2 —  —  —  — —K - 1 0 . D 3 -  20 "" 4

k 3_
2 *

It now remains to divide the 100 eggs in the ratio of 3 to 2. 
This tells us immediately that the first peasant woman 
had 40 eggs and the second 60 eggs.

L ou d sp eak ers

PROBLEM

Thirteen loudspeakers are set up on a square in two groups: 
there are 4 in one group and 9 in the other. The two groups 
are separated by a distance of 50 metres. The question is: 
where should a person stand for the loudness of the sound 
from both groups to be the same?

SOLUTION

If we denote the distance of the desired point from the 
smaller group by x, then its distance from the larger group 
will be 50 — x (Fig. 16). Knowing that the sound intensity
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9

Fig. 16

falls off with the square of the distance, we have the equation
4 _  x 2 
9 ”  (50 — x)2

which, simplified, looks like this:
# 2b+  80#  — 2000 =  0.

Solving the equation we get two roots: 
x x =  20, 

x2 =  —100.

The positive root answers the question at once: the point of 
equal audibility is located 20 metres from the group made 
up of four loudspeakers and, consequently, 30 metres from 
the group of nine.

What does the negative root of the equation signify? Has 
it~any meaning at all?

Yes, it does. The minus sign means that the second point 
of equal audibility lies in the opposite direction to that
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which is taken as the positive direction when we set up the 
equation.

If we lay off 100 metres from the location of the four 
loudspeakers in the required direction, we find the point 
where the sound from both groups of loudspeakers comes in 
with equal intensity. This point lies at a distance of 100 me
tres +  50 metres =  150 metres from the group of nine 
loudspeakers.

To summarize, then, we have found two points of equal 
audibility (that is, from among the points lying on a straight 
line joining the sources of sound). There are no other such 
points on that line, but outside the line there are. It can 
be proved that the set of all points satisfying our problem 
constitutes a circle drawn through the two points that were 
found as through the endpoints of the diameter. It will 
be seen that this circle bounds a rather extensive area 
(cross-hatched in the drawing) inside which the audibility 
of the group of four loudspeakers is greater than that of the 
group of nine, and outside this circle the situation is just 
the opposite.

T he A lgebra  of a  Lunar V oyage

In the same manner that we found points of equal audibil
ity in a system of two groups of loudspeakers, we can find the 
points of equal attraction of a spaceship in flight between 
two celestial bodies: the earth and the moon. Let us try to 
find these points.

By Newton’s law, the force of mutual attraction of two 
bodies is directly proportional to the product of the masses 
of the bodies and is inversely proportional to the square 
of the distance between them. If the mass of the earth is M 
and the distance of the spaceship from it is ir, then the 
force with which the earth pulls each gram of mass of the
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spaceship is given as
M k

X2
where k is the force of mutual attraction of one gram by 
one gram at a distance of one centimetre.

The force with which the moon attracts each gram of the 
spaceship at the same point is

m k

where m is the mass of the moon and Z is its distance from 
the earth (the spaceship is assumed to be located between the 
earth and the moon on the straight line connecting their 
centres). The problem requires that

M k  m k

M  _  x 2 
m  Z2— 2lx - \ - x 2 *

The ratio — is known from astronomy to be roughly equal 
to 81.5. Substituting it into this equation gives us

—- *  =81.5,
11 — 2 lx - \ - x 2‘

and from this we get
80.5a;2 -  163.0ZX +  81.5Z2 =  0.

Solving the equation for x, we obtain
xx — 0.9Z, x2 =  1.12Z.

As in the problem of the loudspeakers, we conclude that 
there are two desired points on the earth-moon line where 
the spaceship must be identically attracted by both celestial 
bodies: one point lying at 0.9 the distance between them

li* 163



reckoning from the centre of the earth, and the other at 
1.12 the same distance. Since the distance I between the 
centres of the earth and the moon is approximately equal to 
384 000 km, one of the sought-for points will be 346 000 km 
from the centre of the earth, and the other will be at 
430 000 km.

Now we know (see the preceding problem) that all points 
of a circle passing through the two points just found, taking

Earth 

13000 km

384000km

/ Moon '
1 I i
| 3500kmQ\

84000km

Fig. 17

them as the endpoints of a diameter, have this property. If 
we rotate this circle about the line joining the centres of 
the earth and the moon, it will describe a spherical surface, 
all points of which will satisfy the requirements of our 
problem.

The diameter of this sphere, called the sphere of attraction 
(Fig. 17) of the moon, is equal to

1.12Z — 0.9Z =  0.22Z »  84 000 km.

There is a rather widespread erroneous opinion that if one 
wants to reach the moon in a spaceship it is sufficient to reach
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its sphere of attraction. At first glance it would appear that 
if a spaceship enters the sphere of attraction (and if, besides, 
its velocity is not considerable), then it must inevitably 
fall onto the moon since the force of lunar attraction in 
this region overcomes the earth's gravity. If this were the 
case, the problem of flights to the moon would be much 
simpler, for it would not be necessary to aim at the moon 
the diameter of which appears in the sky at an angle of 
1/2°, but at a sphere of diameter 84 000 km, whose angular 
dimensions are equal to 12°.

However, it is easy to show that this reasoning is wrong.
Suppose a spaceship launched from the earth is contin

uously losing speed due to the earth’s gravitational attrac
tion and reaches the sphere of attraction of the moon with 
zero velocity. Will it fall onto the moon? Not at all!

First, even within the sphere of attraction of the moon, 
terrestrial gravity continues to be felt. That is why the force 
of lunar attraction off the earth-moon line will not merely 
overcome the force of attraction of the earth, but will 
combine with that force via the parallelogram rule and will 
yield a resultant force that is not at all directed towards 
the moon (it is only on the earth-moon line that this resultant 
force is directed towards the centre of the moon).

Second, and this is most important, the moon itself is 
not a fixed target, and if we want to know how a spaceship 
will move with respect to the moon (that is, whether it will 
reach the lunar surface or not), we have to take into account 
the velocity of the spaceship relative to the moon. Now this 
velocity is not at all equ^l to zero, since the moon itself is 
in motion about the earth with a velocity of 1 km/s. For 
this reason, the speed of the spaceship relative to the moon is 
too high for the moon to be aide to attract the spaceship or 
at least hold it within its sphere of attraction as an arti
ficial satellite.

Actually, lunar attraction begins to exert an appreciable 
effect on the motion of a spaceship some time before the ship
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comes close to the sphere of attraction of the moon. In 
celestial ballistics, the rule is to take lunar gravity into 
account from the time the ship comes within the so-called 
sphere of action of the moon (66 000 km in radius). Then one 
can consider the motion of a spaceship relative to the moon 
and totally disregard the earth’s gravity, but close account 
must be made of the velocity (relative to the moon) with 
which the spaceship enters the sphere9of action. It is natural, 
therefore, that the spaceship has to be sent to the moon 
along a flight path that ensures that the velocity (relative 
to the moon) of entry into the sphere of action is directed 
at the moon. For this to happen, the sphere of lunar action 
must run into the spaceship as it is moving to an encounter 
across its path of travel. So we see that hitting the moon is 
no easy job, much less so than hitting a sphere 84 000 km 
in diameter.

A Hard P rob lem

In 1895 N. Bogdanov-Belsky painted a picture called 
A Hard Problem (see Fig. 18) and many of those who have 
seen it most likely skipped over the problem itself, though 
it is well worth looking into. The idea behind the picture is a 
problem in mental arithmetic, to be solved at a glance:

102 +  i l 2 + 1 2 2 +  132-j-142 _ 0 
365 ”  *

The problem really isn’t easy. But the pupils of the teacher 
portrayed in the picture—and the portrait is an accurate one 
of S. A. Rachinsky, professor of natural science, who left the 
university to become an ordinary schoolteacher in the vil
lage-coped with it. In his school this talented teacher 
cultivated habits of mental arithmetic based on a marvellous 
handling of the properties of numbers. The numbers 10, 11,
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Fig. 18

12, 13, and 14 have the curious peculiarity that 102 +  
_|_ lia  +  i 22 =  132 +  142

Since 100 +  121 -j- 144 =  365, it is easy to work out 
mentally that the expression given in the picture is equal 
to 2.

Algebra enables us to pose the problem of this interesting 
peculiarity of a number series on a broader basis: is this 
the only series of five consecutive numbers, the sum of the 
squares of the first three of which is equal to the sum of 
the squares of the last two?
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SOLUTION
Denoting the first of the desired numbers by x, we get 

the equation
x2 +  (x +  l)2 +  (X +  2)2 =  (x +  3)2 +  ( X  +  4)2.

It is more convenient however to denote by x the second 
one of the sought-for numbers instead of the first. The equa
tion then takes on a simpler aspect:

(x -  l)2 +  a * +  (z +  l)2 =  (s +  2)2 +  (x +  3)2.
Removing brackets and simplifying, we obtain

x2 — 10 x — 11 =  0,
whence

x =  5 ±  }/"25 +  11, xx =  11, x2 -= —1.

Thus there are two sequences of numbers with the required 
property: the Rachinsky sequence

10, 11, 12, 13, 14

and the sequence
- 2 ,  - 1 ,  0, 1, 2.

True enough,

(—2)2 +  ( - 1 )2 +  02 =  l 2 +  22.

Fintlincf N um bers
PROBLEM

Find three successive numbers that have the property that 
the square of the middle number is greater by unity than the 
product of the other two numbers.
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SOLUTION
If the first of the sought-for numbers is x, then the equa

tion we can set up looks like this:
(x +  l)2 =- z (x +  2) +  1.

Removing brackets, we get the equation 
x2 +  2z +  1 =  x2 +  2x +  1.

But we can’t find x. This means that we have an identity, 
and it holds true for all values of the letters involved and 
not only for certain values, as in the case of an ordinary 
equation. And so any three numbers taken in succession 
possess the required property. Indeed, take any three num
bers at random,

17, 18, 19,
and we see that

182 -  1749 -  324 -  323 =  1.
The necessity of such a relation is even more evident if 

we use x to denote the second number. We then get
x2 — 1 =  (x +  1) (x — 1) 

which is an obvious identity.



Chapter seven 

LARGEST AND SMALLEST VALUES

The problems in this chapter have to do with a very excit
ing thing: the seeking of maximum (largest) and minimum 
(smallest) values of some quantity. They may be solved in a 
variety of ways, one of which we give below.

In his paper entitled The Drawing of Geographical Mapsy 
the eminent Russian mathematician P. L. Chebyshev wrote 
that those methods of science are of particular value that 
permit solving a problem that is common to the whole 
range of human activity: how to arrange the facilities at 
one’s disposal so as to attain the greatest possible advantage.

T w o T ra in s
PROBLEM

Two railway lines intersect at right angles. Two trains 
are racing at the same time to the intersection, one having 
left a station 40 km from the intersection, the other from 
a station 50 km from the intersection. The first train is 
doing 800 metres per minute, the second, 600 metres per 
minute.

In how many minutes after start will the locomotives be 
separated by the shortest distance? Find that distance.

SOLUTION
Let us make a diagram of the movements of the trains. 

Let the straight lines AB and CD be the intersecting lines 
(Fig. 19). Station B is 40 km from the point of intersection O,
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station D is 50 km from it. Suppose that after a lapse of 
x minutes the locomotives are separated by the smallest 
distance MN =  m. The train that left B would by then 
have covered the distance BM =  0.8a;, since it does 800 me
tres, or 0.8 km, a minute. And so OM =  40 — 0.8a:. In the

Fig. 19

A

9.6
M
\ 1 6

D
c 12.8

B

Fig. 20

same way we find that ON =  50 — 0.6 x. By the theorem 
of Pythagoras,

MN  =  m =  ] / OM'2 +  =  ]/ (40 — 0.8a;)2 +  (50 — 0.6a:)2.

Squaring both sides of the equation, we get

ro =  y  (40 — 0.8s)2 +  (50 — 0.6s)2.
Simplifying, we obtain

x2 — 124# +  4100 — m2 =  0.

Solving this equation for x1 we finally have 
x =  62 zb m2 — 256.

Since x is the number of minutes and that number cannot 
be imaginary, it follows that m2 — 256 must be a positive 
quantity or at least zero. The latter corresponds to the
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smallest possible value of m, and then 

m2 =  256, or m =  16.

It is obvious that m cannot be less than 16, for then x 
becomes imaginary. And if m2 — 256 =  0, then x — 62.

To summarize: the locomotives are closest to each other 
after 62 minutes and the separation will then be 16 km.

Let us now see how they stand at that moment. We com
pute the length of OM to be

40 -  62-0.8 =  -9 .6 .

The minus sign means that the locomotive has passed the 
intersection by 9.6 km. And the distance ON is equal to

50 -  62-0.6 -  12.8

which means the second locomotive is 12.8 km short of the 
intersection. This position of the locomotives is shown in 
Fig. 20. As we now see, it doesn’t look at all like what 
we imagined before we began. The equation turned out to be 
very tolerant and despite the incorrect drawing gave us the 
proper answer. This tolerance is clearly due to the algebraic 
rules for signs.

P la n n in g  the S ite  o f a  F la g  S ta tion
PROBLEM

Twenty kilometres from a railway line is a hamlet B 
(Fig. 21). The problem is to select a site for construction 
of a flag station C so that travelling time from A to B via 
railway from A to C and highway from C to B is a minimum. 
The rate of travel by rail is 0.8 kilometre a minute and by 
highway 0.2 kilometre a minute.
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Fig. 21

SOLUTION
Denote by a the distance AD (from A to the foot of the 

perpendicular BD to AD) and by x the distance CD. Then 
AC =  AD — CD =  a -  x and CB =  VCD2 -I BD2 =  
=  +  202. The time during which a train covers the
distance AC is

AC   a—x
1)78"~  0.8 *

The travelling time by highway from C to B is

CB _  Y z 2-(-202
0.2 ~  0,2

The time required to get from 4  to 5  is

a  — x  Y  x 2 +  202
1T8™  ̂ 072 •

This sum, which we denote by hi, must be the smallest 
possible.

The equation
a — x

“olT
Vx2 +  202 

0.2 =  m
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can be cast in the form]
/ z 2 +  20'2

0.8 0.2  

Multiplying by 0.8, we get

: m - a

"O’

—x +  4 ]/ x2 +  202 == 0.8 m — a.
Denoting 0.8m — a by k and getting rid of the radical 

Hgn, we obtain the quadratic equation
15z2 -  2kx +  6400 -  k2 =  0,

whence
A ±  1/ 16A:2 — 96 000

15
Since k =  0.8m — a, it follows that /i: attains a minimum 
when m is a minimum and conversely.* But for x to be real, 
167b2 must be at least equal to 96 000. Hence that figure 
is the smallest we can have for 167b2. Therefore, m becomes 
least when

167b2 =  96 000
and so we see that

and, consequently,
k =  1/6000

r0 /6000 :5.16.15 15
To summarize, then, no matter how long a =  AD is, 

the flag station must be located at about 5 km from the 
point D.

Quite naturally, our solution is meaningful only for 
cases where x <  a, because when we set up the equation 
we regarded the expression a — x as being positive.

If x =  a & 5.16, then there is no need to build a flag 
station at all and the highway will have to be built straight

* Note that k >  0 since
0.8m  =  a  — x  T" 4 } / £ 2 + 202 > a  — x  - \ -  x  =  a ,
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to the main station. And the same goes for cases where the 
distance a is shorter than 5.16 km.

This time, it turns out, we have more insight than the 
equation. If we were to blindly follow the equation, we would 
have to construct a flag station right after the station, which 
would be nonsense: in that case x >  a and therefore the 
time

a—x
i n r

during which we travel by rail is negative. This is an instruc
tive example that shows caution is necessary when handling 
mathematical tools and interpreting results. One must bear 
in mind that the final figures may be meaningless if the 
premises on which the use of those tools is based are not 
properly taken into account.

An O ptim al H igh w ay
PROBLEM

A town A is located on a river and we have to send freight 
to B , a town located a kilometres downstream and d kilo
metres lfrom the river (Fig. 22). The problem is to locate

Fig- 22
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a highway between B and the river so that transportation 
of goods from A to B is cheapest, taking into consideration 
that the transport cost of a ton-kilometre on the river 
is half that by highway.

SOLUTION
We denote the distance AD by x and DB by y : it is given 

that AC is equal to a and BC is equal to d.
Since highway transport is twice as expensive as river 

transport, the sum
x

must be a minimum in accordance with the requirements of 
the problem. We denote this minimum value by m and we 
have the equation

x —j— 2y =  m.

But x =  a — DC and DC =  V  y2 — d2; and so our equation 
becomes

a — ] /  y2 — d2 +  2y =  m 
or, after getting rid of the radical sign,

3z/2 — 4 (m — a) y +  (m — a)2 +  d2 =  0.
Solving it for y, we get

2 V , /(TO — a)2 — 3d2
y =  ~3 - ( ™ - 0 ) ±  — ------3̂ ---------- .

For y to be real, (m — a)2 must be at least 3d2. The small
est value of (m — a)2 is equal to 3d2 and then

j  -»/ 2 (to — cl) -j- 0 2>d ~\f 3m — a =  d y  3, y =  —̂— — — = — 5— ?

sin ZBDC =  d:y ,  or
d # 2d 1/3 V 3



Now, an angle whose sine is equal to —  is 60°. This means
the highway must be sited at an angle of 60° to the river, 
no matter what the distance AC.

Here again we have the same peculiarity encountered in 
the preceding problem. The solution is meaningful only 
under a certain condition. If the point is located so that the 
highway built at an angle of 60° to the river passes on the 
other side of the town A , then the solution cannot be applied; 
in that case the highway should be built directly between B 
and the town A , dispensing with river transport.

W hen Is^tlie P ro duct a M axim um ?

The solution of a large number of maximum and minimum 
problems (that is, seeking the largest and smallest values of 
some variable quantity) is neatly handled by an algebraic 
theorem that we now introduce. We reason as follows.

How can a given number be partitioned into two parts 
so that the product of the parts is a maximum?

SOLUTION

Suppose the given number is a. Then the parts into which a 
is partitioned may be expressed as

Y + x  and y  — x.

The number x shows by what amount these parts differ from 
y  a. The product of both parts is equal to

The product of the parts will clearly increase as x diminishes, 
that is to say, as the difference between the parts decreases.
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And the product will be greatest when x =  0, which is the
case when both parts are equal to y .

To summarize: the number must be halved—the product of 
two numbers whose sum is invariable will be a maximum 
when the numbers are equal.

Now let us examine the question of three numbers.
How do we partition a given number into three parts so 

that the product of the three parts is a maximum?

SOLUTION
We proceed on the basis of the foregoing problem. 
Suppose a number a is partitioned into three parts. To

start with, we assume that no part is equal to y  . Then there 

will be a largest part greater than y   ̂all three of them can* 

not be less than y ^ ; we express it as
a iJ  +  X.

There also will be a smallest part, less than y  , which we 
express as

a
T ~ y-

The numbers x and y are positive. The third part will obvi
ously be

a iT  +  y ~ x.

The numbers and +  x — y have the same sum as theo o
first two parts of the number a, while the difference between 
them, or x — y, is less than the difference between the first 
two parts, which difference is equal to x +  y. As we know 
from the solution of the preceding problem, it follows that
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the product

y ( f  + x ~ y )
exceeds the product of the first two parts of a.

Thus, if we replace the first two parts of the number a 
by the numbers

Cl ] fl |y  and y  +  x — y
and leave the third part unchanged, then the product will 
increase.

Now let one of the parts be equal to y .  Then the other 
two will look like this:

T + z and y - z-
If we make the last two parts equal to y  (their sum does
not change of course), then the product will again increase 
and become equal to

a a a a3
3 3 3 27 •

To summarize: if the number a is partitioned into three
q3

unequal parts, then the product of the parts is less than — ,
that is to say, than the product of three equal factors forming 
a sum equal to a.

In similar fashion we can prove this theorem for four 
factors, for five factors and so forth.

Now let us consider a more general case.
The problem is to find values of x and y such that the ex

pression xpyq is largest if x +  y =  a.
SOLUTION 

For what value of x does the expression 
xv (a — x)q
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reach a maximum?
Multiply this expression by the number to get a new 

expression
xP (a —  x)<l 
pP qQ

which will obviously attain a maximum value whenever the 
original expression does.

Let us represent the expression thus obtained as
x x x x a —  x a —  x a —  x
P *  p ' l > '  P  ' "  ' Q Q ’ 0
------- v------ ' •------------ ------------

p times q times

The sum of all factors of this expression is equal to

p p p  * x
a —  x , a —  x

Q 0
P times q times

px  , q( a  —  x) .=  — +  —------   =  x +  a — x = a,p q
that is, the quantity is a constant.

On the basis of what has been proved above (pp. 177-478) 
we conclude that the product

x x x  a —  x a —  x a —  x
P  ' T '  P  ' "  Q Q * Q.

reaches a maximum when all its separate factors are equal, 
that is, when

x   a— x
P  ~  0 '

Knowing that a — x =  y, we obtain (after a simple mani
pulation) the proportion

X  _ p

T ~  7*
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Thus, the product xvyq attains a maximum (given the 
constant sum x +  y) when

x : y =  p : q.
In the same fashio i we can prove that the products

xvyqzr1 xpyqzrtu and so forth
(given the constant sums £ +  y +  z, x +  y +  z +  t and 
so on) attain maximum values whenever

x:y  :z =  p : q:r, x :y  : z : t  =  p :q : r :u  and so on.

W hen Is th e  Sum  a  M inimum?

The reader who would like to test himself in proving useful 
algebraic theorems can try his hand at proving the following 
propositions:

1. The sum of two numbers whose product is invariable 
becomes a minimum when the numbers are equal.

For example, take the product 36: 4 +  9 =  13, 3 +  12 =  
=  15, 2 +  18 =  20, 1 +  36 =  37 and, finally, 6 +  6 =  12.

2. The sum of several numbers whose product is a constant 
becomes a minimum when the numbers are equal.

For example, take the product 216: 3 +  12 +  6 =  21, 2 +  
+  18 +  6 =  26, 9 +  6 +  4 =  19, yet 6 +  6 +  6 =  18.

The following are some cases where these theorems find 
pra ct ica 1 a ppl ica t ion.

A Beam  of M axim um  V olum e
PROBLEM

The problem is to saw out of a cylindrical log a rectangular 
beam of largest volume. Find the shape of the cross section 
it will have (Fig. 23).
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Fig. 23

SOLUTION
If the sides of the rectangular cross section are x and y , 

then by the Pythagorean theorem we have
x2 +  y2 =  d2

where d is the diameter of the log. The volume of the beam 
is a maximum when the area of its cross section is a maxi
mum, that is, when xy becomes a maximum. Now if xy 
is a maximum, then so is the product x2y2. Since the sum 
x2 +  y2 is constant, it follows by what has been already 
proved that the product x2y2 is the largest possible one when

x2 =  y2 or x =■ y.
Hence the cross section of the beam must be a square.

T w o P lo ts  of Lmad
PROBLEMS

1. What shape must a rectangular plot of laud of a given 
area have for the length of fence bounding it to be a mini
mum?

2. What shape must a rectangular plot of land have for the 
area to be a maximum for a given length of fence?

SOLUTIONS
1. The shape of the rectangular plot depends on the rela

tionship of its sides x and y. The area of a plot with sides x 
and y is xy, and the length of the fence around the plot is
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2x +  2y. The fence will be of minimum length if x +  y 
attains a minimum.

For a constant product xy, the sum x +  y is a minimum 
when x equals y, Consequently, the sought-for rectangle is a 
square.

2. If x and y are the sides of a rectangle, then the length 
of the fence is 2x +  2y and the area is xy. The product will 
be a maximum at the same time that the product Axy (or 
2x-2y) is. Now the latter product, given a constant sum 
of its factors, 2x +  2y, becomes a maximum when 2x =  2y, 
which is when the plot is a square.

To the familiar properties of a square that we learned in 
geometry we can add the following: of all rectangles the 
square has the smallest perimeter for a given area and the 
largest area for a given perimeter.

Makiiijj a  K ite
PROBLEM

We have a kite in the shape of a circular sector and it is 
required to change the shape so that it will have the largest 
possible area for the given perimeter. What will the shape of 
the sector be?

SOLUTION
Let us make more explicit the requirements of the prob

lem: for what relationship between the length of the arc of 
the sector and its radius will the area attain a maximum for 
the given perimeter?

If the radius of the sector is equal to x and the arc is y, 
then the perimeter I and the area S will be expressed as (see 
Fig. 24):

I =  2x +  y,
S j i—2x)
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The quantity S reaches a maximum for the same value of x as 
the product 2x (I — 2#), which is four times the area. Since 
the sum of the factors 2x +  (I — 2x) =  I is a constant quan
tity, their product is a maximum when 2x =  I — 2x, whence

ln r--- ---- •

To summarize: for a given perimeter, the sector encloses the 
largest area when its radius is half the arc (or, the length

of the arc is equal to the sum of the radii, or the length of 
the curvilinear portion of the perimeter is equal to the length 
of the broken line). The angle of the sector is approximately 
equal to 115°, or two radians. How the kite will fly is quite 
a different matter—something we won’t go into.
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B u ild in g  a  H ou se
PROBLEM

Using one whole wall of a house that was partially de
stroyed, we wish to build a new house. The one remaining 
whole wall is 12 metres long. The area of the new house is to 
be 112 square metres. The conditions of work are as follows:

(1) repairing one linear metre of wall comes to 25% of 
laying down a new wall;

(2) dismantling one linear metre of the old wall and laying 
down a new wall using the material of the old wall will cost 
50% of what constructing a linear metre of wall using new 
materials would come to.

What is the best way to make use of the old wall?
SOLUTION

Suppose x metres of the old wall are retained and the re
maining 12 — x metres are dismantled so that the materials 
obtained are used again in the construction of a part of the 
wall of the new house (Fig. 25). If the cost of laying a linear
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metre of wall using new material is equal to a, then repair
ing x metres of the old wall will cost erecting a portion

CL (12 x\of length 12 — x will cost — ^ t h e  cost of the remain
ing portion of that wall will be a [y — (12 — x)] or a (y +  
+  x — 12); the cost of the third wall is ax, of the fourth 
wall, ay. Altogether, the work will cost

a x  . a (12 — x )  , , , a o \  i , a ( l x - \ - S y )—  + - ^ ~ 2 ----  +  a (y +  x -  12) + ax  +  ay =  J  ■ — 6a.

This expression is a minimum whenever the following sum
is:

7# +  8 y.
We know that the floor area xy of the house is 112; hence,

lx-8y =  56-112.
Given a constant product, the sum lx  +  8y reaches a 

minimum when
lx  =  8 y

and so we have
7

y = T x-

Putting this expression for y into the equation

we get
xy =  112,

- x 2=112, x = Y  128 «  11.3.

And since the length of the old wall is 12 metres, we have 
to dismantle only 0.7 metre of that wall.
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F en c in g  in  a  Lot
PROBLEM

The construction of a summer cottage is to be undertaken. 
The first step is to fence off the plot of land. There is enough 
material for I linear metres of fence. Also, a portion of an 
earlier built high wooden fence can be used for one side of 
the lot. Under these conditions, find a way to fence off a 
rectangular lot of largest possible area.

SOLUTION
Suppose the portion along the high fence (see Fig. 26) is 

x , while the width (that is, the dimension of the lot perpen
dicular to the high wooden fence) is equal to y. Then x +  2y

metres of fencing is needed to enclose that portion, so that
x +  2y =  Z.

The area of the lot is equal to
S =  xy =  y (I — 2y).
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It attains a maximum value at the same time that the quan
tity

2y (I — 2y)
does. This is twice the area and is a product of two factors 
with a constant sum I. And so to obtain the greatest area we 
must have

2y — I — 2y
whence

y r=T '  x =  l - 2 y = - ^ - .
In other words, x =  2y, or the length of the plot must be 
twice its width.

A T rough  of M axim um  C ross S e c tio n
PROBLEM

A rectangular sheet of metal (Fig. 27) is to be bent into 
the shape of a trough with cross section having the form of 
an equilateral trapezoid. This can be done in a variety of
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ways, as shown in Fig. 28. Of what width must the lateral 
strips be and at wbat angle are they to be bent for the cross 
section of the trough to have the maximum area (Fig. 29)?

SOLUTION

Let the width of the sheet be I. We denote the width of 
the bent side strips by x and the width of the bottom of the 
trough by y. Let us introduce another unknown z; its meaning 
is clear from the drawing in Fig. 30.

Fig. 30

The area of the trapezoid that represents the cross section 
of the trough is

S = l E  +  y  +  z ) +  y  ] / a ; 2 _ z 2 = - | / ( y  +  z ) 2 ( a. 2 _ z 2 ) -

The problem reduces to determining those values of x, y, 
z for which S attains a maximum value; note that the sum 
2x +  y (that is, the width of the sheet) retains a constant 
value 1. After a few simplifying manipulations, we get

S2 =  (y +  z)2 (x +  z) (x — z).

The quantity S2 is a maximum for the same values of x, 
y, z, as 352, and the latter can be expressed as a product:

(y +  z) (y +  z) (x +  z) (3x — 3z).
The sum of these four factors,

y + z  +  y +  z +  x +  z +  3x — 3z =  2y +  4x =  21,
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is a constant. Therefore the product of our four factors is a 
maximum when they are equal to each other, or

y +  z =  x +  z and x +  z — 3x — 3 z.

From the first equation we have

y =  x,

and since y +  2x =  /, it follows that x — y =  -̂

From the second equation we find

Furthermore, since the leg z is equal to half the hypotenuse 
x (Fig. 30), the angle opposite that leg is equal to 30°, and 
the angle of inclination of the sides of the trough to the bot
tom is equal to 90° +  30° =  120°.

Summarizing, we see that the trough will have a maximum 
cross section when its faces are bent into the shape of three 
adjacent sides of a regular hexagon.

A F u n n el of M axim um  C apacity
PROBLEM

A circular tin disc is used to make the conical portion of 
a funnel. For this purpose (see Fig. 31), a sector is cut out 
and the remaining portion is twisted into a cone. How many 
degrees must there be in the arc of the cut-out sector so that 
the cone is of maximum capacity?

SOLUTION
Denote by x the length (in linear measure) of the arc of 

that portion of the circle that is twisted into a cone. Thus, 
the radius R of the tin disc will be the generatrix of the cone,

190



Fig. 31

and the base circle will be equal to x. We determine the ra
dius r of the base of the cone from the equation

2jtr =  x, whence r =  .

The altitude of the cone (by the Pythagoras theorem) is

H =  V W = ? i  =

(Fig. 31). For the volume of the cone we have

This expression becomes a maximum whenever the expres
sion

( I r ) V ^ r
and its square

( £ ) • [ * ■ - (t t ) ']
do.
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Since

is a constant, it follows (on the basis of what was proved on 
pp. 179-181) that the last product is a maximum for the 
value of x when

In degrees, the arc x ^  295° and, hence, the arc of the 
sector that was cut out must contain ^65°.

T he B r ig h test Illu m in ation
PROBLEM

A candle is on a table (Fig. 32). At what height above the 
table must the flame be so as to best illuminate a coin lying 
on the table?

and from this

3 ( i f )2=2/?2 and * =

A

Fig. 32

192



SOLUTION
It might seem that the lower the flame the better. This is 

not so: in a low position of the flame of the candle, the rays 
fall at a very sloping angle. But if the candle is high and 
the rays fall at a sharp angle, then the light source is too 
far away. The best illumination is clearly at some interme
diate height of the flame above the table. We denote it by x 
(Fig. 32). And we use a to denote the distance BC of the 
coin B from the foot C of a perpendicular passing through 
the flame A . If the brightness of the flame is i, then the 
illumination of the coin is given, by the laws of optics, as

i  i  cos a tcosa
COS OS - 1 r  ---- . t)   o I o' ,

AB2 ( l /V  +  x2)2 a + x

where a  is the angle of incidence of a pencil of rays AB, 
Since

cos a  =  cos A X
~AB

x

Y  a2 - \ -  x 2

it follows that the illumination is
t x

a2 +  x2 Y a 2-\-x2 I
(.a2 +  x2)1

This expression reaches a maximum for the same value of 
x as its square, or

(a2 +  x2)3 #
The factor i2 is dropped since it is a constant; the remainirg 

part of the expression is then transformed as follows:
X2

( a 2 - \ - x 2 ) 3

1
(x2-)-rt2)2 (*

a 2 \  

x2-j-a2 j '
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The transformed expression reaches a maximum together 
with the expression

( __al __\ 2 ( 1 --------— )
\  x 2-\-a2 )  \  x 2 - ) - a 2 /

since the constant factor a4 that was introduced does not 
affect the value of x for which the product attains its maxi
mum value. Noting that the sum of the first powers of these 
factors,

__al ___L / 1 _ __al __) =  1
X 2 _ | _ a 2 i " \ 1 x 2 +  a 2 ) A>

is a constant, we conclude that the product at hand is a 
maximum when

(see pp. 179-181).
We have the equation

a2 =  2x2 +  2a2 — 2a2.
Solving this equation, we find that

X = -4 = « 0 .7 1  a.V2
The coin is best illuminated when the light source is at 

a height of 0.71 of the distance from the projection of the 
source to the coin. Knowing this relation helps in arranging 
proper lighting of one’s work place.



Chapter eight 

PROGRESSIONS

T he M ost A n cien t P rob lem  D ea lin g  
w ith  P r o g r e s s io n s

PROBLEM
The oldest problem involving progressions is not that of 

awarding the inventor of chess—over two thousand years ago. 
There is a much older problem that has to do with dividing 
loaves of bread and is recorded in the famous Rhind papyrus 
of Egypt. This papyrus which was discovered by Rhind at the 
end of last century was written about 2000 years B.C. and 
is an excerpt from a still more ancient mathematical text 
that perhaps belongs to the third millenium before our era. 
Included among the arithmetical, algebraic and geometric 
problems of that document is the following one which we 
give in a free translation:

Divide one hundred loaves of bread among five persons so 
that the second one receives as much more than the first as 
the third receives more than the second, and the fourth more 
than the third, and the fifth more than the fourth. Besides, 
the first two are to receive 7 times less than the three others. 
How much is to be given to each?

SOLUTION
Clearly, the loaves obtained by those participating in 

the division constitute an increasing arithmetic sequence 
(progression). Let the first term be x and the difference y. 
Then

the p o rtio n  of the first m an i s ............................ x

th e  p o rtio n  of the second m an  i s ..........................  x - \ - y

the p o r tio n  of the th ird  m an is  ........................ x - \ - 2 y

the p o r tio n  of th e fourth  m an i s .........................  s - j -3 y

th e  p ortion  of the fifth  m an i s ............................. s - j - 4 y
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Using the conditions given in the problem, we set up the 
following two equations:

(x +  (x +  y) +  (x +  2 y) +  (x +  3 y) +  (x +  4 y) =  100,
1 7 [x +  (x +  y)] =  (x +  2y) +  (x +  3y) +  (x +  4y). 

After simplifications the first equation looks like this:
x +  2y =  20, 

and the second like this:
i ix  =  2 y.

Solving this system of equations, we obtain

* = 1 i -  ^ = 9 t -
And so the loaves of bread are to be divided into the follow
ing portions:

1 - |. !0 y , 20, 29-1, 3 8 - .

A ljjebra on Sq uared  P ap er
Despite the nearly 50 centuries that this problem in 

progression has been around, it found its way into school 
only a relatively short while ago. Take the Russian textbook 
of Magnitsky published two hundred years ago that served 
as the standard school text for half a century; here, progres
sions are given, but there are no general formulas relating 
the quantities involved. For that reason, even the writer of 
the textbook himself found such problems hard. Yet it is so 
easy to derive the formula for the sum of the terms of an 
arithmetic progression in a simple and pictorial manner with 
the aid of squared paper. On such paper, any arithmetic pro
gression can be depicted as a step-like figure. For example,
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the diagram ABDC in Fig. 33 depicts the progression 
2, 5, 8, 11, 14.

In order to determine the sum of its terms, fill out the 
diagram to complete the rectangle ABGE. We then have
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Fig. 33

two equal figures: ABDC and DGEC. The area of each de
scribes the sum of the terms of our progression. Hence, the 
double sum of the progression is equal to the area of the 
rectangle ABGE, or

(AC +  CE) -AB.
But AC +  CE gives the sum of the first and fifth terms of 
the progression; AB is the number of terms in the progres
sion. Therefore, the double sum:

2S  =  (the sum of the extreme terms)*(the number of terms)

or
g _(first term +  last term)*(number of terms)
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W aterin g  the G arden
PROBLEM

There are 30 rows in a garden, each row 16 metres in length 
and 2.5 metres in width. The gardener waters his garden by 
hauling pails of water from a well 14 metres from the edge 
of the garden, and then walks between the rows. One trip 
to the well suffices to water only one row.

What distance does the gardener cover in watering the 
whole garden? The start and finish are at the well.

SOLUTION
To water the first row, the gardener covers the distance 

14 +  16 +  2.5 +  16 +  2.5 +  14 =  65 metres.
In watering the second row, he covers
14 +  2.5 +  16 +  2.5 +  16 +  2.5 +  2.5 +  14 -  65 +

+  5 =  70 metres.
Each subsequent row requires 5 metres more to be covered 
than the preceding one. We then get the progression

65, 70, 75; . . .; 65 +  5-29.
The sum of the terms of the progression equals 

J65 +  65 +  29.5) 30. =  4125 metres>

In all, the gardener covers a distance of 4.125 km in 
watering his garden.

F e e d in g  C h ick en s
PROBLEM

A certain amount of feed has been stored for 31 chickens, 
to be used at the rate of one decalitre (10 litres) per chicken 
per week. There was to be no change in the number of
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chickens. But since there was a decrease of one chicken 
every week, the feed lasted twice as long as planned.

What was the original supply of feed and for what period 
was it planned?

SOLUTION
Suppose x decalitres of feed was stored for y weeks. Since 

it was calculated for 31 chickens at the rate of 1 decalitre 
per chicken per week, we have

x =  31 y.
During the first week, 31 decalitres was used up, during 

the second 30, during the third 29, and so on up to the last 
week of twice the originally planned period. The amount of 
feed consumed in the last week came to

(31 — 2y +  1) decalitres.*
The total supply thus came to 

x =  Sly =  31 +  30 +  29 +  . . . +  (31 -  2y +  1).
The sum of 2y terms of the progression, the first term of 

which is 31 and the last term is. 31 2y +  1, is equal to

31y =  ■■(31 +  31~ 2y+1)2y =  (63 -  2y) y.

Since y cannot be zero, we have every right to divide 
through by that factor. And we get

31 =  63 — 2 y and y =  16,

* Given week by week, we have:

1st week 31 decalitres,
2nd week 31 — 1 decalitres,
3rd week 31 — 2 decalitres,

2y~th week 31 — (iy —1) =  31 — 2i/-|-l decalitres.
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whence
x — 31 y =  496.

The supply that was put in came to 496 decalitres of feed 
calculated to last 16 weeks.

A T eam  of D ig g e rs
PROBLEM

The senior-class boys at a school took upon themselves 
the digging of a ditch in the school yard and organized a 
team of diggers. If the team had worked all at once, the ditch 
would have been ready in 24 hours. Actually, however, only 
one boy began. After a time, another boy joined him, and 
then—again after the same amount of time—a third boy 
joined in, then a fourth, and so on up to the last one. It was 
found that the first had worked 11 times longer than the last.

How much time did the last boy work?

SOLUTION
Suppose the last member of the team worked x hours. 

Then the first one worked llx  hours. Now if the number of 
diggers was y, then the total number of hours of work will 
be expressed as the sum of y terms of a decreasing progres
sion, the first term of which is llx  and the last term is x, or

(11 *+ *> *■= 6sy.

On the other hand it is known that a team of y boys work
ing all together would be able to dig the ditch in 24 hours, 
which means 24y working hours is needed to complete the 
job.

Consequently,
6 xy — 2Ay.
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The number y cannot be zero and so we can cancel it out 
of the equation to get

This means the last one of the team to start working was 
busy 4 hours.

We have found the answer to the problem, but if we had 
been curious enough to ask how many participated in the 
work, we wouldn’t have been able to say, despite the fact 
that that number entered into the equation (it was y). It is 
merely that there is not enough information in the hypothe
sis of the problem to get that answer.

PROBLEM
A man has an apple orchard and sells to his first customer 

half of all the apples plus half an apple; to the second cus
tomer he sells half of the rest plus half an apple; to the 
third, half of the remainder plus half an apple, and so on. 
To the seventh customer he sells half of what remains and 
another half-apple. And that is all he had. How many apples 
did the farmer start out with?

SOLUTION
Use x to denote the original number of apples; then the 

first customer received

6x =  24
and

x =  4.

A p ples

2
x \ _ x -j-1

~2~ T~
the second customer,

x +  i 
22 »
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the third,
1 / x-\-\ x-\-i \ 1 x4~ 1

~2 \ x 2 4 23 ’

and the seventh customer bought
X -\- i  

27 •
We thus have the following equation:

x +  1 x +  1 x +  1 * +  l
2 22 ' 23 i * * * i 27 =  X

or

(a: +  l ) ( y  +  - 5 2 - + l T + - - - + ^ r ) z=ir-

Computing the sum of the terms of the geometric progression 
in the parentheses, we get

and

X
x - \ - \ 1 27

x =  27 -  1 =  127.
Altogether there were 127 apples.

B u yin g  a  H orse
PROBLEM

In the old Russian arithmetic of Magnitsky we find an 
amusing problem that I give here in a translation into 
modern language.

Somebody sold a horse for 156 rubles. However the buyer, 
after all, decided not to take the horse and so returned it 
to its owner with the words:

“There is no point in my taking this horse for such a price 
because the animal is just not worth it.”
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Then the owner suggested the following.
“If the price of my horse is too high, then buy only the

horseshoe nails, and then I ’ll give you the horse free of
charge. There are six nails in each horseshoe. For the first

1 1 nail you give me only of a kopeck, for the second y  , for
the third 1 kopeck, and so on,”

Fig. 34

The client was mighty pleased to hear such a low price 
and, wishing to get the horse free of charge, agreed to the 
conditions of the owner, figuring that he would not have to 
pay more than 10 rubles altogether.

How much did the buyer lose in this deal?

.203



SOLUTION 
For 24 horseshoe nails he had to pay

1 + 1 + 1 +2 + 22 + 2*+ ...+22*-*
kopecks. This is equal to

221-2—t- , ,
■ =  2*2 - 1  =  4194 3031  kopecks

or about 42 000 rubles. With a price like that, there is no 
need to worry about the horse going free of charge.

P a y in g  for th e  W ounds of a  S o ld ie r

PROBLEM

Another old Russian textbook of mathematics that goes by 
the lengthy title A Complete Course in Pure Mathematics 
Compiled by Cadet of Artillery and Special Mathematics 
Teacher Efim V oityakhousky for the Benefit and Use of the 
Youth and Those Practising Mathematics (1795) offers this 
problem:

A soldier was rewarded for each wound received in battle: 
for the first wound he got 1 kopeck, for the second 2 kopecks, 
for the third 4 kopecks, and so on. When the complete calcu
lation was made, it was found that the soldier was rewarded 
the sum of 655 rubles and 35 kopecks. We want to know the 
number of wounds he received.

SOLUTION 
We set up the equation

65535 =  1 +  2+2* +  23+ . .. + 2 * '1
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or
65 535 =  =  2* - 1

and from this we find
65 536 =  2* and x =  16.

This result can be easily found by running through the se
quence.

With this generous system of payment, a soldier has to 
get 16 wounds and be still alive in order to reap his reward of 
655 rubles and 35 kopecks.



Chapter nine

THE SEVENTH MATHEMATICAL 
OPERATION

T he S even th  O peration

We have already mentioned that the fifth operation — 
raising to a power—has two inverse operations. If

then finding a is one inverse (extraction of a root) and find
ing b is the other inverse' (taking logarithms). I am sure the 
reader has some basic knowledge of logarithms from his 
school studies. He would probably have no difficulty in figur
ing out the meaning of the following expression:

It is easy to see that if the base a of logarithms is raised 
to the power of the logarithm of the number 6, then the result 
must be the number b.

Why were logarithms invented? To speed up and simplify 
calculations, naturally. The inventor of the first tables of 
logarithms, Napier, spoke of the impulse to his work, saying 
he had tried to the best of his ability to remove the difficul
ties and boredom of calculation, which ordinarily is so 
tiresome as to frighten away many from the study of mathe
matics.

Indeed, logarithms simplify and speed up calculations to 
a remarkable degree, to say nothing of the fact that they 
make it possible to perform operations that would otherwise 
be extremely difficult (extracting high-index roots).

With full justification, Laplace could write that the inven
tion of logarithms, by reducing the amount of calculation
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from the work of months to that of days, actually doubled the 
life of astronomers. The great mathematician spoke of astro
nomers because it was their lot to carry out particularly 
complicated and arduous computations. But his words can 
justly be applied to everyone who has to deal with numeri
cal computations*

Today we are used to logarithms and to the extent to 
which they simplify the computation process and so it is 
hard to imagine the wonder and excitement they caused 
when they first appeared. A contemporary of Napier’s, 
Henry Briggs, who later came to fame through the inven
tion of common (based on ten) logarithms, wrote the following 
in a letter after having read Napier’s work: “Napper [Na
pier], lord of Markinston, hath set my head and hands a work 
with his new and admirable logarithms. I hope to see him this 
summer, if it please God, for I never saw book which pleased 
me better, or made me more wonder.” Briggs set out for 
Scotland to visit the inventor of logarithms. When they 
met, Briggs began: “My lord, I have undertaken this long 
journey purposely to see your person, and to know by what 
engine of wit or ingenuity you came first to think of this 
most excellent help in astronomy, viz. the logarithms; 
but, my lord, being by you found out, I wonder nobody found 
it out before, when now known it is so easy.”

R iv a ls  of L ogarith m s

Before the invention of logarithms, the requirements of 
speedy calculations gave rise to tables of a different kind 
in which the operation of multiplication is replaced by sub
traction instead of addition. These tables are based on the 
identity

4 4
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All one needs to do is open the brackets to see that the iden
tity holds.

Having ready at hand the fourths of squares, one can find 
the product of two numbers without performing the multipli
cation but simply by subtracting the fourth of the square of 
the difference of the numbers from that of their sum. 
The same tables simplify squaring numbers and taking the 
square roots of numbers, and when combined with a table of 
reciprocals, they simplify the operation of division as well. 
Their advantage over logarithmic tables is that they yield 
exact, not approximate, results. On the other hand, however, 
they are inferior to logarithmic tables in a number of ways 
which are of more practical importance. Whereas tables of 
the fourths of squares permit multiplying only two numbers, 
logarithms enable one to find at once the product of any num
ber of factors, and, what is more, to raise a number to any 
power and extract roots having arbitrary indices (integral 
and fractional). For example, it is impossible to compute 
compound interest with the aid of tables of fourths of 
squares.

Even so, tables of fourths of squares continued to be 
published after the appearance of a great variety of loga
rithmic tables. In 1856, a set of tables appeared in France 
entitled:

A table of- the squares of numbers from 1 to 1000 million 
with the aid of which one can find the exact product of numbers 
by an extremely simple procedure that is more convenient than 
by means of logarithms. Compiled by Alexander Cossar.

This very idea pops up time and again without their 
inventors realizing that it is an old one. I personally was 
approached by two inventors of similar tables and they were 
greatly surprised to learn that their invention was already 
over three hundred years old.

A different and younger rival of logarithms are the com
putation tables of most engineering reference works. These 
are combination tables with columns of squares, cubes, square
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roots, cube roots, reciprocals, circumferences and areas of 
circles for numbers from 2 to 1000. Such tables are very 
convenient for many engineering calculations but they are 
not always sufficient. Logarithmic tables have a far broader 
range of application.

T he E vo lu tion  of L ogarith m ic  T a b les

Not so long ago Soviet schools used five-place logarithmic 
tables. They have now gone over to four-place tables because 
these are quite sufficient for engineering calculations. But 
for most practical needs, even three-place mantissas are 
suitable. The point is that only rarely do measurements in
volve more than three decimal places.

The idea that shorter mantissas would suffice was real
ized just recently. I can remember a time when we used hefty 
tomes of seven-place logarithms in school. They were later 
replaced by five-place tables after a stubborn struggle. But 
even the seven-place logarithms seemed to be an outrageous 
innovation when they appeared in 1794. The first common 
logarithms created by the energy of the London mathemati
cian Henry Briggs (1624) were 14-place. A few years later 
they were supplanted by the ten-place tables of the Dutch 
mathematician Adrian Vlacq.

As we have seen, the evolution of practical logarithmic 
tables has been in the direction from mantissas with many 
decimal places to fewer and fewer decimal places, and the 
trend is still in progress today because many people do not 
realize the simple fact that the accuracy of. computations 
cannot exceed that of the measurements.

Shortening the mantissas brings about two important 
practical results: (1) a much smaller volume of the tables 
and (2) a concomitant simplification in their use, which of 
course means faster calculations. Sevemplace logarithms 
of numbers take up about 200 large-size pages, five-place
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logarithms take up only 30 pages of a much smaller size 
book; four-place logarithms are ten times shorter, occupying 
only two large-size pages, and three-place logarithms fit into 
a single page.

Now as to speed of calculation, it has been found that for 
instance a calculation via five-place tables requires only 
one third the time seven-place tables do.

L ofyarith m ioT ab le  C ham pions

Whereas the computational needs of practical life and 
general engineering are quite satisfied with three- and four- 
place tables, the theoretician has need for tables with many 
more places than even the fourteen-place logarithms of 
Briggs. Generally speaking, in most cases a logarithm is an 
irrational number and cannot be exactly expressed by any 
number of digits: the logarithms of most numbers are given 
only approximately, no matter how many decimal places 
are taken—the larger the number of decimal places in the 
mantissa, the more exact the result. Even the Briggsian four
teen-place tables* prove insufficient for some scientific work. 
However, the researcher will never go unsatisfied, for among 
the 500 various types of logarithmic tables that have ap
peared since logarithms were invented there will definitely be 
one that can handle the job. Let us take, for example, the 
twenty-place logarithms of numbers from 2 to 1200 that 
were published in France by Callet (1795). For smaller ranges 
of numbers there are tables of logarithms with fantastic 
numbers of decimal places. There are giants that many mathe
maticians have never even suspected existed.

Here is a short list of the champion logarithms (they are 
all natural logarithms, not common logarithms):**

* The fourteen-place logarithms of Briggs are, incidentally, avail
able only for the numbers from 1 to 20 000 and from 90 000 to 101 000.

** Natural logarithms use the base 2.718... (instead of 10). They 
are discussed later on.
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48-place tables of Wolfram for the numbers up to 10 000;
61-place tables of Sharp;
102-place tables of Parkhurst; 

and, finally, the logarithmic wonder of them all: the 
260-place logarithms of Adams.

The last case, to be exact, is not a table but only the so- 
called natural logarithms of five numbers: 2, 3, 5, 7 and 10 
and the 260-decimal conversion factor for converting them 
to common logarithms. But it is easy to see that with the 
logarithms of these five numbers it is possible, via simple 
addition or multiplication, to obtain the logarithms of a 
multitude of composite numbers; for example, the logarithm 
of 12 is equal to the sum of the logarithms of 2, 2 and 3, and 
so forth.

Another logarithmic marvel is the slide rule (“wooden 
logarithms”) but it has become so common a counting tool of 
the engineer as to be on the level of yesteryear’s abacus 
among clerical workers. The slide rule is such a routine tool 
we are no longer amazed that while it operates on the prin
ciple of logarithms, the user need not even know what a loga
rithm is.

L ogarith m s on the S ta g e

One of the most amazing feats performed on the stage by 
professional calculators is the one where the lightning cal
culator offers to mentally work out the high-index roots of 
multidigit numbers. At home you arduously calculate the 
31st power of some number and are prepared to knock out 
the calculating virtuoso with a 35-digit leviathan. At the 
right moment you ask the calculator:

“Try to find the 31st root of the following 35-digit number. 
Write it down as I dictate.”

The calculator takes a piece of chalk and before you have 
opened your mouth with the first digit he has already writ
ten down the result: 13.
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Without even knowing the number, he extracted the 31st 
root in his head and with lightning speed!

You sit flabbergasted, yet there is nothing at all super
natural in this feat. The secret is that there is only one 
number, namely 13, which, raised to the power of 31, yields a 
35-digit result. Numbers less than 13 produce fewer than 
35 digits, those greater than 13 generate more digits.

But how did the calculator know that? How did he find 
the number 13? Very simply, with the aid of logarithms, 
two-digit logarithms that he had learned by heart for the 
first 15 to 20 numbers. It is no trouble at all to memorize 
them, especially if one bears in mind that the logarithm of 
a composite number is equal to the sum of the logarithms 
of its prime factors. Knowing the logarithms of 2, 3 and 7

10(recall that log 5 =  log y  =  1 — log 2), you already know
the logarithms of the first ten numbers; for the second ten, 
one has to memorize the logarithms of another four numbers.

At any rate, the lightning calculator of the stage has in 
his memory the following table of two-digit logarithms:

N u m b er L o g a r ith m N u m b e r L o g a r ith m

2 0.30 11 1.04
3 0.48 12 1.08
4 0.60 13 1.11
5 0.70 14 1.15
6 0.78 15 1.18
7 0.85 16 1.20
8 0.90 17 1.23
9 0.95 18 1.26

19 1.28
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The m athem atical trick  that amazed you is this:

log (35 digits) =  gj -  .

The desired logarithm can lie between

H and or between 1.09 and 1.13.

In this interval we have the logarithm of only one whole 
number, namely 1.11; it is the logarithm of 13. That is 
exactly how the startling result was found. True, to do all 
this mentally in a flash requires the training and skill and 
wit of the professional, but essentially it is quite simple, 
as you can see. Tricks of this kind are now within your grasp, 
if not mentally then at least on paper.

Suppose you are asked to find the 64th root of a 20-digit 
number.

Without even asking for the number you can state the 
result of the extraction: the root is 2.

Indeed, log (20 digits) =  . Consequently, it lies
IQ IQ QQbetween ^  and ‘ , or between 0.29 and 0.32. There is64 64 7

only one such logarithm for a whole number: 0.30..., or the 
logarithm of the number 2.

You can even demolish your questioner by telling him what 
number he was about to propose: the famous chess number

264 =  18 446 744 073 709 551 616.

L ogarith m s on a  S to ck -R a is in g  Farm
PROBLEM

The amount of the so-called maintenance ration (that is 
the minimum feed required to maintain the needs of the 
body for heat emission, the functioning of the internal organs,
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the restoration of dying cells, and so forth)* is proportional to 
the surface area of the animal. Knowing this, determine the 
calorific value of maintenance feed for an ox weighing 420 ki
lograms if under the same conditions an ox weighing 630 ki
lograms requires 13 500 calories.

SOLUTION
To work out this practical problem of stock farming, we 

will need some geometry in addition to algebra. It is given 
that the desired calorific value x is proportional to the 
surface (5) of the ox, or

X  __ 5
13 500 — “

where sx is the surface area of an ox weighing 630 kg. 
Geometry says that the surface areas (s) of similar bodies are 
in the same ratio as the squares of their linear dimensions 
(Z), and the volumes (hence, the weights) are in the same 
ratio as the cubes of their linear dimensions. Therefore

420 _  Is 
l\ ’ 630“  q

From this we get

and, hence, I___ y 420
h ~  >/630 ’

x _  \'r 4202_ \ f  / 420 \ 2_ 2 \2
13500 _  1̂ 6302“  V  \630/ ~  V  \ 3 /  »

x =  13 5 0 0  i - .

Using a table of logarithms, we find that
s =  10 300.

Which means the ox requires 10 300 calories.

* In contrast to the “productive” ration, which is the part that 
goes to build up the animal for slaughter.
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L ogarith m s in  M usic

Musicians do not often take a liking to mathematics; most 
of them respect the science but prefer to stay away from it. 
Yet even those musicians who do not verify “harmony by 
means of algebra” (like Pushkin’s Salieri) come into contact 
with mathematics much more frequently than they even 
suspect; what is more, their contact is with such frightful 
things as logarithms.

I permit myself here a short quotation from an article by 
the later physicist Professor A. Eichenwald. It appeared in 
the Russian Astronomical Calendar for 1919 and was entitled 
“On Large and Small Distances”.

“A friend of mine from Gymnasium days liked to play the 
piano but detested mathematics. He spoke with a touch of 
scorn about music and mathematics having nothing what
soever in common. ‘True, Pythagoras found some kind of 
relationships between sound vibrations, but it is precisely 
the Pythagorean scale that turned out to be unsuitable for 
our music.’

“Imagine the surprise of my friend when I showed him 
that in running his hands over the keys of a modern piano he 
was actually playing on logarithms. Indeed, the steps of 
the tempered chromatic scale are not arranged at equal distan
ces either with respect to the number of vibrations or with 
respect to the wavelengths of the appropriate sounds; they 
are the logarithms of these quantities. Only the base of the 
logarithms is 2 instead of 10, as commonly used.

“Suppose the note do of the lowest octave (we will call 
it the zero octave) is given as n vibrations per second. Then 
the note do of the first octave will have 2n vibrations, that 
of the mth octave, n •2m vibrations, and so on. Let us denote 
all notes of the chromatic scale of a piano by the numbers p 7 
assuming the fundamental tone do of each octave to be the 
zero tone. Then, for example, sol is the 7th tone, la the 9th, 
and so on. The 12th tone is again do, only an octave higher.
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In a tempered chromatic scale, each tone has 2 more vibra
tions than the preceding tone. That means that the number 
of vibrations of any tone can be expressed by the formula

“Taking logarithms, we get

log N pm =  log n -t- m log 2 +

or

logN pm =  logn +  +  log 2.

Now, taking the number of vibrations of the lowest do as 
unity (n =  1) and converting all logarithms to base 2 (or 
simply taking log 2 =  1), we have

log-/Vpm =  7n +  - j j .

“From this we see that the numbers of the keys of a piano 
represent the logarithms of the numbers of vibrations of the 
appropriate sounds (multiplied by 12). We may even say 
that the number of the octave is the characteristic, and the 
number of the sound in the given octave (divided by 12) 
is the mantissa of that logarithm.”

Let us take an example. In the tone sol of the third octave,
that is, in the number 3 +  ^  (^3.583), the number 3 is the 
characteristic of the logarithm of the number of vibrations 
of the tone, and ^  (^0.583) is the mantissa of that loga
rithm to the base 2; hence the number of vibrations is 23-583 
or 11.98 times greater than the number of vibrations of the 
tone do of the first octave.
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T he $tai'S* A o ise  and Lo<fai*ithin&

This heading with its combination of apparently uncom- 
binable items is not an attempt to parody Kuzma Prutkov 
and his writings; it does indeed concern stars and noise and 
logarithms, all closely related.

Noise and stars are grouped together because the loudness 
of noise and the brightness of stars are both gauged in the 
same manner, by a logarithmic scale.

Astronomers divide the stars according to apparent bright
ness into first-magnitude stars, second-magnitude, and so on. 
The sequence of stellar magnitudes is perceived by the human 
eye as terms in an arithmetic progression. However, the 
physical brightness varies according to a different law: the 
objective brightnesses of the stars form a geometric progres
sion with ratio 2.5. It is easy to see that the magnitude of 
a star is nothing other than the logarithm of its physical 
brightness. For example, stars of third magnitude are bright
er than those of first magnitude by a factor of 2.5s"1, or 6.25. 
In short, the astronomer estimates the apparent brightness of 
stars by operating with a table of logarithms to the base 2.5. 
I now leave this topic because it has been dealt with in 
sufficient detail in my book entitled Recreational Astronomy 
[in Russian],

The loudness of sound is described in similar fashion. 
The harmful effect of industrial noises on the health of work
ers and on the productivity of labour was an impetus to 
work out ways of an exact numerical evaluation of the loud
ness of sound. The unit of loudness is the “bel” and the prac
tical unit is a tenth of a bel, or the decibel. Successive degrees 
of loudness—1 bel, 2 bels and so on (practically speaking, 
10 decibels, 20 decibels, and so on)—constitute to our ear 
an arithmetic progression. But the physical intensity of 
these noises form a geometric progression with common ratio 
10. To a loudness difference of 1 bel there corresponds a differ
ence of 10 in the intensity of the noises. This means the
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loudness of sound expressed in bels is equal to the common 
logarithm of its physical intensity.

A few examples will help to clarify this matter.
The soft rustling of leaves is estimated at 1 bel, a loud 

conversation is put at 6.5 bels, the growl of a lion at 8.7 bels. 
From this it follows that the sound intensity of a conversa
tion exceeds the rustling of leaves by a factor of

lO6-5”1 =  105 5 =  316 000.
The growling of a lion is louder than a conversation by a 
factor of

1( )8 . 7 - 6 . 5  =  1 0 2.2 =  1 5 8 _

Noise louder than 8 bels is recognized as being injurious 
to the human organism. Many factories have higher noise 
levels with noises of 10 and more bels. A hammer blow on a 
steel sheet generates 11 bels of sound. Such noises are 100 
and 1000 times stronger than the permissible level and are 10 
to 100 times louder than the loudest spot near the Niagara 
falls (which is 9 bels).

Is it by accident that in measuring the apparent bright
ness of stars and the loudness of sound we have to do with a 
logarithmic relationship between the magnitude of the per
ception and the generating stimulus? No, both are a conse
quence of a general law, called Fechner’s law which is a 
psychophysical law that states that the intensity of the 
sensory response is proportional to the logarithm of the 
stimulus intensity.

So you see logarithms have their way into psychology too.

L ogarith m s in E lec tr ic  L igh tin g
PROBLEM

The reason why gas-filled lamps produce a brighter light 
than electric-filament vacuum lamps of the same material 
lies in the different temperature of the filament. By a rule
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that has been established in physics, the total amount of 
light emitted at white incandescence increases with the 12th 
power of the absolute temperature. With these facts, let us 
now calculate how many times more light is emitted by a gas- 
filled lamp whose filament has a temperature of 2500° oil 
the absolute scale (that is, reckoning from —273 Celsius) 
than by a vacuum lamp with a filament at 2200°.

SOLUTION
Denoting the desired relation by x, we have the equation 

_  / 2500\ 12_ /25\12
X~ \ 2 m )  ~ \ 22 )

whence
log x =  12 (log 25 — log 22), x =  4.6.

A gas-filled lamp emits 4.6 times more light than a vacu
um lamp. Thus, if a vacuum lamp is rated at 50 watts, then 
the gas-filled lamp will yield 230 watts under the same con
ditions.

Let us calculate further to find out what increase in abso
lute temperature (in per cent) is necessary to double the 
brightness of the lamp.

SOLUTION
We set up the equation

and find that

log ( 1 + iJ))= i l^  and x = b % •
Finally, a third calculation. What is the percentage in

crease in the brightness of a lamp if the (absolute) tempe
rature of its filament increases by 1%?
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SOLUTION

Using logarithms to calculate the following expression, 
x =  1.0112,

we find that
x =  1.13.

The brightness increases 13%.
Calculating for a two per cent increase in temperature, 

we find a 27 per cent increase in brightness; if the tempera
ture increases 3%, the brightness will increase 43%.

It is now clear why so much attention in the manufacture 
of electric light bulbs is paid to increasing the temperature 
of the filament, with every extra degree at a premium.

M aking o u t  a W ill for  H undreds  
of Y ears

Who hasn’t heard of the legendary number of grains of 
wheat that the inventor of chess asked as a reward? That 
number was built up out of a successive doubling of unity: 
One grain was asked for the first square on the chessboard, 
two for the second, and so on, doubling each time until the 
64th square was reached.

It will be found however that numbers tend to grow unex
pectedly fast not only in the case of successive doubling 
but even when the rate of increase is rather moderate. Capi
tal invested at 5% interest increases annually by a factor of 
1.05. This would not seem to be much of an increase, yet if 
the time interval is long enough the capital builds up into a 
tremendous sum. This explains the amazing increase of 
capital bequeathed for very long periods of time. It seems 
very strange indeed that a testator can leave a small sum of 
money and also instructions for the payment of enormous
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sums. Yet here is the case of the famous United States states
man Benjamin Franklin who left a will of extreme interest. 
In rough outline it amounts to this.

One thousand pounds sterling is bequeathed by Franklin 
to the residents of the city of Boston. It is requested that the 
most illustrious citizens of the city be entrusted with that 

• sum, which is to be lent at 5 per cent interest annually to 
young handicraftsmen (there were no institutions of com
mercial credit in the United States in those days). In one 
hundred years this sum would increase to 131 000 pounds 
sterling. He then instructed 100 000 pounds to be used for 
the construction of municipal buildings and the remaining 
31 000 pounds to be invested at interest for 100 years. At 
the end of the second century, the sum was to have increased 
to 4 060 000 pounds sterling, of which 1 060 000 pounds were 
to be left to the residents of Boston to be used at their dis
cretion, while 3 000 000 pounds were to go to the manage
ment of the community of Massachusetts. Beyond that, 
Benjamin Franklin did not risk further uses of his accumu
lated money.

He left only 1000 pounds but with instructions involving 
millions. There is no contradiction here, however. A mathe
matical calculation will show that the reasoning behind this 
operation is quite realistic. Every year 1000 pounds increase 
by a factor of 1.05 and in 100 years become

x =  1000-1.05100 pounds.
This expression can be calculated with the aid of loga

rithms:
log x =  log 1000 +  100 log 1.05 =  5.11893, 

which yields
x =  131 000,

in complete agreement with the text of Franklin’s will. 
Then we have 31 000 pounds which during the next century
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become
y =  31 000.1.05* 100, 

whence, using logarithms, we get
y =  4 076 500

which is practically the same as that indicated in the will.
I leave it to the reader to tackle the following problem 

taken from The Messieurs Golovlev of the Russian writer 
Saltykov-Shchedrin.

“Porfiry Vladimirovich is seated in his study numbering 
extensively on some sheets of paper. The question that inter
ests him is: How much money would he now have if his 
dear mother had not taken the 100 rubles given to him by 
his grandfather when he was born, but had banked it in the 
name of the young Porfiry? It turned out to be very little, 
however: only eight hundred rubles.”

Assuming that at the time of the calculations Porfiry was 
50 and again assuming that he carried out the calculations 
correctly (which is really hard to believe since Golovlev 
most likely did not know about logarithms and could not be 
expected to handle compound interest calculations), it is 
lequired to find out the interest he would have received.

C onstant G row th of C apital

In savings banks, the interest is added to the principal 
annually. If the interest is added more frequently, then the 
capital grows faster because a larger amount of money partici
pates in the formation of interest. Let us take a purely theo
retical and extremely simplified case. Suppose a deposit of
100 rubles is made in a savings bank at 100% annual inter
est. If the interest is" added to the principal only at the end of 
one year, then by that time the 100 rubles becomes 200. 
Now let us see what happens if the interest is added to the
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principal every half-year. At the end of the half-year period 
the 100 rubles increases as follows:

100 rubles-1.5 =  150 rubles.

After the next half-year period we have
150 rubles *1.5 =  225 rubles.

If the interest is added every 1/3 year, then at the expira
tion of one year the 100 rubles turns into

100 rubles.  ̂1 — j 3 «  237 rubles and 03 kopecks.

Let us now speed up the adding of interest: we will add 
it to the capital, say, at intervals of 0.1 year, then 0.01 year, 
0.001 year and so on. Then 100 rubles will generate the fol
lowing sums after one year:

100 rubles-1.110 ^  259 rubles 37 kopecks/
100 rubles. 1.01100 «  270 rubles 48 kopecks,

100 rubles-1.0011000 ^  271 rubles 69 kopecks.

Higher mathematics can be used to prove that if the time 
intervals are reduced without limit, the built-up capital 
does not increase without bound, but rather approaches a 
certain limit which is approximately* equal to

271 rubles and 83 kopecks.

Capital deposited at 100% can never increase faster than 
2.7183 times even if the interest is added to the principal 
every second.

* Fractions of kopecks were dropped*
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T he Num ber e

The number 2.718... plays a fundamental role in higher 
mathematics (probably not less significant than the famous 
number n) and has a special symbol: e. This number is 
irrational, which means it cannot be exactly expressed by 
any finite number of digits* and is computed in approxi
mate fashion only—to any desired degree of accuracy—by the 
following series:

From the example given above about the growth of capital 
in terms of compound interest, it is easy to see that the num
ber e is the limit of the expression

as n increases without bound.
For many reasons which we cannot go into here the number 

e is highly desirable as a base for logarithms. Such tables 
(tables of “natural logarithms”) exist and are extensively 
used in science and engineering. The champion logarithms 
involving 48, 61, 102 and 260 digits that we spoke of a little 
while ago use the number e for their base.

The number e often puts in an appearance where it is least 
of all expected. Let us take a look at the following problem.

How should one partition a given number a so that the 
product of all its parts is a maximum?

We already know that the largest product for a constant sum 
is obtained when the numbers are all equal. Clearly, the 
number a is to be partitioned into equal parts. But into how 
Inany equal parts? Two, three or ten? Techniques in higher

* Also, this number, like Jt, is transcendental, which means it 
cannot be obtained by solving any algebraic equation involving inte
gral coefhcientss

1 “*~l-2+ l - 2 - 3+ l-2-3-4
1

1-2-3-4-5
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mathematics enable us to establish that the largest product 
is obtained when the parts are as close as possible to e.

For example, partition 10 into a number of equal parts 
such that they are as close as possible to 2.718.... To do 
this we have to find the quotient

Since it is not possible to partition the number into 
3.678... equal parts, we choose the closest whole number 4 
as the divisor. Thus, we obtain the largest product of the

10parts of 10 if the parts are equal to ^ , or 2.5.

is the largest number that can be obtained from multiplying 
together equal parts of the number 10. Indeed, dividing 10 
into 3 or 5 equal parts, we get smaller products:

In order to obtain the largest product of the parts of 20, 
the number has to be partitioned into 7 equal parts because

20 : 2.718... =  7.36 «  7.
The number 50 has to be partitioned into 18 parts and the 
number 100 into 37 parts because

The number e plays a tremendous role in mathematics, 
physics, astronomy and other sciences. Here are some of the 
questions considered mathematically that involve e (the 
list could be extended indefinitely):

And so
(2.5)4 =  39.0625

50 : 2.718. . . =  18.4,, 
100 : 2.718. . . =  36.8.
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Barometric height formula (decreasing pressure with in
creasing height),

Euler’s formula (see the second part of my Physics for 
Entertainment (Mir Publishers, Moscow): the chapter entitled 
“Jules Verne’s Strong Man and Euler’s Formula”),

The law of cooling of bodies,
Radioactive decay and the age of the earth,
Oscillations of a pendulum in the air,
Tsiolkovsky’s formula for rocket speeds (see my book 

Interplanetary Travel [in Russian]),
Oscillatory phenomena in a radio circuit,
The growth oi cells.

A L ogarith m ic  C om edy
PROBLEM

Here is another one of those mathematical comedies played 
out in Chapter 5: prove that 2 >  3. This time we make use 
of logarithms. The comedy starts out with the inequality

which is definitely correct. We then transform to

(T)!>(4-r.
which is unquestionably clear. To the greater number there 
corresponds the greater logarithm, and so

2 logic ( t ) >  3 lo?io (-5-);

cancelling out log10 ( y )  we are left with: 2 >  3. What is 
wrong with this proof?
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SOLUTION
The trouble is that when we cancelled out log10 ( y ) we 

forgot to reverse the sign of the inequality (>  to < ); yet 
this was necessary because log10 *s a negative number.

If we had taken logs to a base n of less than y  instead of 10,

then logn ^ y j  would be positive, but then we couldn’t have
asserted that the greater number is associated with the larger 
logarithm.

Any Num ber v ia  T hree T w os
PROBLEM

And now we end this book with a witty algebraic brain- 
teaser that amused the participants of a congress of physi
cists in Odessa. The problem is to represent any number that 
must be positive and whole (any positive integer) using three 
twos and mathematical symbols.

SOLUTION

Let us take a particular case. Suppose we are given the 
number 3. Then the problem is solved thus: 3 —

=  — logs log2 ' V / V 2 .
It is easy to see that this equation is true. Indeed,

22

log2 22 3 =  2-3, — loga2“3 =  3.
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If we were given the number 5, we would proceed in the 
same manner:

5 =  — log2 log2VvvV V 2 .

It will be seen that we have made use of the fact that the 
index 2 is dropped when writing the square root.

The general solution looks like this. If the given number 
is N, then

N =  — log2 log2V V... y i/2,
N  t im e s

the number of radical signs equalling the number of units in 
the given number.
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and the analytical geometry 
of ^-dimensions for university 
students. Is mainly concerned 
with the theory of finite linear 
space and linear transformations, 
but also deals with tensor 
algebra (with examples of 
its application). Will be found 
useful by engineering students, 
graduate engineers, and scientific 
workers in various spheres who 
employ the methods of this 
field of mathematics.



V . M A SL O V , D . SC* 
OPERATIONAL METHODS

A textbook for second- and 
third-year university 
mathematics
and physics students, based on 
the author’s lectures in the 
faculty of applied mathematics 
of the Moscow Institute of 
Electronic Engineering and the 
physics faculty of Moscow 
University. Illustrates the 
theoretical material with 
specific physical problems, 
which are taken as the model, 
comparing the formulas of the 
operational method with the 
numerical solution. Will 
interest scientific workers in 
general.
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ALGEBRA
CAN
BEpHH

The first edition of Algebra Can 
Be Fun came out in the nineteen 
twenties and was destined to 
a wonderful future of bringing 
hundreds of thousands 
of youngsters into the fold of 
mathematics and its wonders. It 
is written in the form of lively 
sketches that discuss the 
multifarious (and exciting!) 
applications of algebra to the 
world about us. Here we 
encounter equations, logarithms, 
roots, progressions, the ancient 
and famous Diophantine analysis 
and much more. The examples are 
pictorial, vivid, often witty 
and bring out the essence of the 
matter at hand. There are

numerous excursions into history 
and the history of algebra 
too. Quite naturally, a number 
of things sound a bit 
Old-fashioned—times have 
changed!—but the efforts 
of Lenin Prize Winner 
V. G. Boltyansky, who edited the 
latest edition and added a good 
deal of fresh material from the 
world of computers, have given 
extra polish to this gem of 
entertainment. No one who has 
read this book will ever regard 
mathematics again in a dull 
light. Reviewers regard it as 
one of the finest examples* 
of popular science writing.

MIR
Publishers

Moscow


	YaLPerelman

	Ya. I. Perelman

	From the Author’s Preface to the Third Edition

	Contents

	8


	THE FIFTH OPERATION OF MATHEMATICS

	The Fifth Operation

	Astronomical Numbers

	How Much does the Earth’s Atmosphere Weigh?

	14


	Combustion Without Flames or Heat

	15

	(-- ■ 1018): (3 • 107) =	• 10“ « 1010.


	The Changing Weather

	A Combination Lock

	'fhe Superstitious Cyclist

	The Results of Repeated PoubliiiQ

	20


	Millions of Times Faster

	0 O

	O 0

	22

	Ten Thousand Operations per Second

	Fig.:3

	The Number of All Possible

	Chess Games

	28

	37°=388-3a« 10(34)17^ 10-8017 - 10*817-1017 - 23M018 = 2 (210)5 • 1018 « 2 • 10“ • 1018 = 2.1033 *.

	(20 • 20)5. (30-30)35 « 103 * 2.1033.1080 - 2.10116.


	The Secret of the Chess Machine

	31


	The Biggest Number Using Only Three Twos

	32


	Three Threes

	Three Fours

	Three Identical Digits

	aa_1 > 11.

	The Biggest Number Using Four Ones

	Four Twos to Make the Biggesi Niiinbei*

	2222, 2222, 2222, 2222.

	36

	2222 « 24 000 000 > 101 200 000

	THE LANGUAGE OF ALGEBRA

	The Art of Setting up Equations

	The Life of Diophantus

	40


	The Horse and the Mule

	41


	Four Brothers

	42


	Two Birds by the Riverside

	43


	Out for a Stroll

	45

	IF-TJ^T


	Making Hay

	46

	48


	Cows in the Meadow

	50

	51

	52



	Newton’s Problem

	(3| + i2l):/l8.= “+^

	54

	Interchanging the Hands of a Clock

	55

	jy	

	57



	The Hands of a Clock Come Together

	58


	Guessing Numbers

	59

	60

	61

	62


	Imaginary Nonsense

	The Equation Does the Thinking

	Curios and the Unexpected

	64


	At the Barber’s

	Tramcars and a Pedestrian

	Rafts and a Steamboat

	70


	Two Cans of Coffee

	J2.02 y + 1.60* = 2,

	I y+ t= l.



	^=lr=0-95- *=°-05-

	A Question of Dancing

	Reconnaissance at Sea

	74


	At the Cycle Track

	75


	A Competition of Motorcyclists

	7G

	77


	Average Speeds

	78

	79


	High-Speed Computing Machines

	80

	82


	(4)	1,

	87

	86

	Chapter three AS AN AID TO ARITHMETIC

	Instantaneous Multiplication

	92

	93

	(3-i)2 = 3.52=12.25 = 12i,


	The Digits 13 5, and 6

	95


	The Numbers 25 and 76

	Infinite “Numbers”

	Additional Payment

	100


	Divisibility by 11

	101

	102


	A License Number

	Divisibility by 19

	A Theorem of Sophie Germain

	Composite Numbers

	The Number of Primes

	109


	The Largest Prime Discovered So Far

	A Responsible Calculation

	Ill

	112

	« 2 (1 — 0.111 . .. . 10~10) = 2 - 0.0000000000222 ...


	When It’s Easier Without Algebra

	Chapter four DIOPHANTINE EQUATIONS

	Buying a Sweater

	116

	117

	119





	8 -f* 5^ < 0,	1	-f-	3ti < 0

	— —2,	3,	4,

	x = -2, -7, -12,

	y = —5, —8, —11.

	Auditing Accounts

	120

	121


	Buying Stamps

	y = 20 — 11 t9


	z 5= 31.

	x = 20 + 81.

	Buying Fruit

	124

	f 50x +	-f 1 z — 500,

	49x + 9 y = 400.

	125



	Guessing a Birthday

	126

	12x + 31y = a.

	12x2 + 31y2 = a.


	Selling Chickens

	128

	or

	130


	Two Numbers and Four Operations

	131


	What Kind of Rectangle?

	132


	Two Two-Digit Numbers

	133

	134


	Pythagorean Numbers

	135

	137


	An Indeterminate Equation of the Third Degree

	140

	141

	# *=	20r2 + lOrs — 3s2,

	y =	12 r2 — lOrs — 5s2,

	z =	16r2	+	8	rs	+	6s2,

	t = —24 r2 — 8rs — 4s2.


	One Hundred Thousand for the Proof of a Theorem

	143


	THE SIXTH MATHEMATICAL OPERATION

	The Sixth Operation

	146


	Which Is Greater?


	1/2 >/5

	Solve It at a Glance

	149


	Algebraic Comedies

	4 —10 + 6- = 9 —15 + 6-|-.






	(2-4)2=(3-4)!-

	150


	(2-4f=(3-4)2

	(-4)2=(4 )*•

	151



	(4+r=(5-ir-

	4 = 5,

	SECOND-DEGREE EQUATIONS

	Shaking Hands

	Swarms of Bees

	155


	A Troop of Monkeys

	156


	Farsighted Equations

	Eiiler’s Problem

	158


	second: (100-g)-g = -^(1g=-a;

	159


	Loudspeakers

	160

	#2b+ 80# — 2000 = 0.


	The Algebra of a Lunar Voyage

	163

	164


	A Hard Problem

	166

	167


	-2, -1, 0, 1, 2.

	Fintlincf Numbers

	17, 18, 19,

	182 - 1749 - 324 - 323 = 1.


	Chapter seven LARGEST AND SMALLEST VALUES

	Two Trains

	170

	171


	Planning the Site of a Flag Station

	172

	173

	—x + 4 ]/ x2 + 202 == 0.8 m — a.

	15z2 - 2kx + 6400 - k2 = 0,

	174


	inr

	An Optimal Highway

	175

	2	V , /(TO — a)2 — 3d2

	y = ~3-(™-0)± —	3^	.


	When Is^tlie Pro duct a Maximum?

	When Is the Sum a Minimum?

	A Beam of Maximum Volume

	Two Plots of Lmad

	182


	Makiiijj a Kite

	183

	184


	Building a House

	186


	Fencing in a Lot

	187


	A Trough of Maximum Cross Section

	188

	189


	A Funnel of Maximum Capacity

	190




	(Ir)V^r

	(£)•[*■-(tt)']

	191

	The Brightest Illumination

	192


	The Most Ancient Problem Dealing with Progressions

	195

	(x + (x + y) + (x + 2 y) + (x + 3 y) + (x + 4 y) = 100,

	1-|.	!0	y,	20,	29-1,	38-.


	Aljjebra on Squared Paper

	197


	Watering the Garden

	Feeding Chickens

	198


	A Team of Diggers

	200


	Apples

	201

	(a: + l)(y + -52-+lT+---+^r)z=ir-


	Buying a Horse

	202



	1 + 1+ 1 +2 + 22 + 2*+ ...+22*-*

	Paying for the Wounds of a Soldier

	204

	or


	THE SEVENTH MATHEMATICAL OPERATION

	The Seventh Operation

	206


	Rivals of Logarithms

	207


	The Evolution of Logarithmic Tables

	LofyarithmioTable Champions

	Logarithms on the Stage

	211


	Logarithms on a Stock-Raising Farm

	213


	Logarithms in Music

	The $tai'S* Aoise and Lo<fai*ithin&

	Logarithms in Electric Lighting

	218



	log (1+iJ))=il^ and x=b%•

	219

	Making out a Will for Hundreds of Years

	220


	Constant Growth of Capital

	The Number e

	224

	225



	A Logarithmic Comedy

	Any Number via Three Twos


	V V... y i/2,

	OTHER MIR TITLES



	YaLPerelman




